HandCrankMPPT-Firmware-Rust/src/main.rs

210 lines
6.5 KiB
Rust

//! # PWM Blink Example
//!
//! If you have an LED connected to pin 25, it will fade the LED using the PWM
//! peripheral.
//!
//! It may need to be adapted to your particular board layout and/or pin assignment.
//!
//! See the `Cargo.toml` file for Copyright and license details.
#![no_std]
#![no_main]
use embedded_hal::digital::v2::OutputPin;
// Ensure we halt the program on panic (if we don't mention this crate it won't
// be linked)
use panic_halt as _;
// Alias for our HAL crate
use rp2040_hal as hal;
// Some traits we need
use cortex_m::singleton;
use embedded_hal::PwmPin;
use fugit::RateExtU32;
use rp2040_hal::clocks::Clock;
// A shorter alias for the Peripheral Access Crate, which provides low-level
// register access
use hal::pac;
// SPI + DMA
use hal::dma::{bidirectional, DMAExt};
// UART related types
use hal::uart::{DataBits, StopBits, UartConfig};
use heapless::String;
/// The linker will place this boot block at the start of our program image. We
/// need this to help the ROM bootloader get our code up and running.
/// Note: This boot block is not necessary when using a rp-hal based BSP
/// as the BSPs already perform this step.
#[link_section = ".boot2"]
#[used]
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_GENERIC_03H;
/// The minimum PWM value (i.e. LED brightness) we want
const LOW: u16 = 0;
/// The maximum PWM value (i.e. LED brightness) we want
const HIGH: u16 = 25000;
/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust
/// if your board has a different frequency
const XTAL_FREQ_HZ: u32 = 12_000_000u32;
/// Entry point to our bare-metal application.
///
/// The `#[rp2040_hal::entry]` macro ensures the Cortex-M start-up code calls this function
/// as soon as all global variables and the spinlock are initialised.
///
/// The function configures the RP2040 peripherals, then fades the LED in an
/// infinite loop.
#[rp2040_hal::entry]
fn main() -> ! {
// Grab our singleton objects
let mut pac = pac::Peripherals::take().unwrap();
let core = pac::CorePeripherals::take().unwrap();
// Set up the watchdog driver - needed by the clock setup code
let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);
// Configure the clocks
//
// The default is to generate a 125 MHz system clock
let clocks = hal::clocks::init_clocks_and_plls(
XTAL_FREQ_HZ,
pac.XOSC,
pac.CLOCKS,
pac.PLL_SYS,
pac.PLL_USB,
&mut pac.RESETS,
&mut watchdog,
)
.ok()
.unwrap();
// The single-cycle I/O block controls our GPIO pins
let sio = hal::Sio::new(pac.SIO);
// Set the pins up according to their function on this particular board
let pins = hal::gpio::Pins::new(
pac.IO_BANK0,
pac.PADS_BANK0,
sio.gpio_bank0,
&mut pac.RESETS,
);
// The delay object lets us wait for specified amounts of time (in
// milliseconds)
let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().to_Hz());
// UART
let uart_pins = (
// UART TX (characters sent from RP2040) on pin 1 (GPIO0)
pins.gpio0.into_mode::<hal::gpio::FunctionUart>(),
// UART RX (characters received by RP2040) on pin 2 (GPIO1)
pins.gpio1.into_mode::<hal::gpio::FunctionUart>(),
);
let uart = hal::uart::UartPeripheral::new(pac.UART0, uart_pins, &mut pac.RESETS)
.enable(
UartConfig::new(9600.Hz(), DataBits::Eight, None, StopBits::One),
clocks.peripheral_clock.freq(),
)
.unwrap();
// Init PWMs
let mut pwm_slices = hal::pwm::Slices::new(pac.PWM, &mut pac.RESETS);
// Configure PWM4
let pwm5 = &mut pwm_slices.pwm5;
pwm5.set_ph_correct();
pwm5.set_div_int(4);
pwm5.set_div_frac((88 << 4) / 100);
pwm5.set_top(512);
pwm5.enable();
let pwm6 = &mut pwm_slices.pwm6;
pwm6.set_ph_correct();
pwm6.enable();
let pwm7 = &mut pwm_slices.pwm7;
pwm7.set_ph_correct();
pwm7.enable();
// Output channel B on PWM4 to GPIO 25
let channel1 = &mut pwm6.channel_b;
channel1.output_to(pins.gpio13);
let channel2 = &mut pwm7.channel_a;
channel2.output_to(pins.gpio14);
let channel3 = &mut pwm7.channel_b;
channel3.output_to(pins.gpio15);
let pwr_switch_ch = &mut pwm5.channel_a;
pwr_switch_ch.output_to(pins.gpio10);
pwr_switch_ch.set_duty(450);
let mut ch_val: [u16; 3] = [LOW, LOW + (HIGH - LOW) / 3, LOW + 2 * (HIGH - LOW) / 3];
uart.write_full_blocking(b"Initialization complete!\r\n");
// SPI CS pin is controlled by software
let mut spi_cs = pins.gpio5.into_push_pull_output();
spi_cs.set_high().unwrap();
// These are implicitly used by the spi driver if they are in the correct mode
let _spi_sclk = pins.gpio2.into_mode::<hal::gpio::FunctionSpi>();
let _spi_mosi = pins.gpio3.into_mode::<hal::gpio::FunctionSpi>();
let _spi_miso = pins.gpio4.into_mode::<hal::gpio::FunctionSpi>();
let spi = hal::spi::Spi::<_, _, 8>::new(pac.SPI0);
// Exchange the uninitialised SPI driver for an initialised one
let spi = spi.init(
&mut pac.RESETS,
clocks.peripheral_clock.freq(),
1_000_000u32.Hz(),
&embedded_hal::spi::MODE_0,
);
// Initialize DMA.
let dma = pac.DMA.split(&mut pac.RESETS);
// Use DMA to read ADC (0xC0 in byte 1 is the channel mask)
let tx_buf = singleton!(: [u8; 3] = [0x06, 0x40, 0x00]).unwrap();
let rx_buf = singleton!(: [u8; 3] = [0; 3]).unwrap();
// clear chip select
spi_cs.set_low().unwrap();
// Use BidirectionalConfig to simultaneously write to spi from tx_buf and read into rx_buf
let transfer = bidirectional::Config::new((dma.ch0, dma.ch1), tx_buf, spi, rx_buf).start();
// Wait for both DMA channels to finish
let ((_ch0, _ch1), tx_buf, _spi, rx_buf) = transfer.wait();
spi_cs.set_high().unwrap();
let adc_value = (((rx_buf[1] & 0x0F) as u16) << 8) | rx_buf[2] as u16;
{
let data: String<16> = String::from(adc_value);
uart.write_full_blocking(b"Read ADC value: ");
uart.write_full_blocking(data.as_bytes());
uart.write_full_blocking(b"\r\n");
}
// Infinite loop, fading LED up and down
loop {
for i in 0..ch_val.len() {
ch_val[i] += 1;
if ch_val[i] > HIGH {
ch_val[i] -= HIGH - LOW;
}
}
channel1.set_duty(ch_val[0]);
channel2.set_duty(ch_val[1]);
channel3.set_duty(ch_val[2]);
delay.delay_us(50);
}
}