433 lines
13 KiB
Python
Executable file
433 lines
13 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
|
|
import sys
|
|
import svgwrite
|
|
import numpy as np
|
|
import matplotlib.pyplot as pp
|
|
from matplotlib.colors import hsv_to_rgb
|
|
import json
|
|
import random
|
|
import argparse
|
|
|
|
REF_LATITUDE = 49.58666
|
|
REF_LONGITUDE = 11.01250
|
|
# REF_LATITUDE = -30
|
|
# REF_LONGITUDE = 90
|
|
|
|
|
|
def map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon, R=1):
|
|
""" Azimuthal equidistant projection.
|
|
|
|
This function takes a point to map in latitude/longitude format as well as
|
|
a reference point which becomes the "center" of the map.
|
|
|
|
It then projects the point into the 2D plane such that the distance from
|
|
the center is proportional to the distance on the Great Circle through the
|
|
projected and the reference point. The angle represents the azimuthal
|
|
direction of the projected point.
|
|
|
|
Args:
|
|
lat(numpy.array): Latitudes of the point to project.
|
|
lon(numpy.array): Longitudes of the point to project.
|
|
ref_lat(float): Latitude of the reference point.
|
|
ref_lon(float): Longitude of the reference point.
|
|
R(float): Radius (scale) of the map.
|
|
|
|
Returns:
|
|
x(numpy.array): The calculated x coordinates.
|
|
y(numpy.array): The calculated y coordinates.
|
|
|
|
"""
|
|
dlon = lon - ref_lon
|
|
|
|
rho_linear_norm = np.arccos(np.sin(ref_lat) * np.sin(lat)
|
|
+ np.cos(ref_lat)
|
|
* np.cos(lat) * np.cos(dlon)) / np.pi
|
|
|
|
rho = R * rho_linear_norm
|
|
|
|
theta = np.arctan2(np.cos(lat) * np.sin(dlon),
|
|
(np.cos(ref_lat) * np.sin(lat)
|
|
- np.sin(ref_lat) * np.cos(lat)
|
|
* np.cos(dlon)))
|
|
|
|
x = rho * np.sin(theta)
|
|
y = -rho * np.cos(theta)
|
|
|
|
return x, y
|
|
|
|
|
|
def random_country_color():
|
|
h = random.random()
|
|
s = 0.7
|
|
v = 0.8
|
|
r, g, b = [int(255.99*x) for x in hsv_to_rgb([h, s, v])]
|
|
return f"#{r:02x}{g:02x}{b:02x}"
|
|
|
|
|
|
def is_point_in_polygon(point, polygon):
|
|
# Idea: draw an infinite line from the test point along the x axis to the
|
|
# right. Then check how many polygon edges this line intersects. If the
|
|
# number is even, the point is outside the polygon.
|
|
|
|
edges = [] # list of lists, containing two points each
|
|
|
|
for i in range(len(polygon)-1):
|
|
edges.append([polygon[i], polygon[i+1]])
|
|
|
|
# the closing edge
|
|
edges.append([polygon[-1], polygon[0]])
|
|
|
|
num_intersects = 0
|
|
|
|
test_x, test_y = point
|
|
|
|
for edge in edges:
|
|
start_x = edge[0][0]
|
|
start_y = edge[0][1]
|
|
end_x = edge[1][0]
|
|
end_y = edge[1][1]
|
|
|
|
# quick exclusion tests
|
|
if start_x < test_x and end_x < test_x:
|
|
continue # edge is completely left of the test point
|
|
|
|
if start_y < test_y and end_y < test_y:
|
|
continue # edge is completely below the test point
|
|
|
|
if start_y > test_y and end_y > test_y:
|
|
continue # edge is completely above the test point
|
|
|
|
# calculate the x coordinate where the edge intersects the whole
|
|
# horizontal line
|
|
intersect_x = start_x + (end_x - start_x) \
|
|
* (test_y - start_y) \
|
|
/ (end_y - start_y)
|
|
|
|
if intersect_x > test_x:
|
|
# we found an intersection!
|
|
num_intersects += 1
|
|
|
|
if num_intersects % 2 == 0:
|
|
return False # even number of intersects -> outside polygon
|
|
else:
|
|
return True # odd number of intersects -> inside polygon
|
|
|
|
|
|
def svg_make_inverse_country_path(doc, map_radius, polygon, **kwargs):
|
|
# build a closed circle path covering the whole map
|
|
commands = [f"M 0, {map_radius}",
|
|
f"a {map_radius},{map_radius} 0 1,0 {map_radius*2},0",
|
|
f"a {map_radius},{map_radius} 0 1,0 {-map_radius*2},0",
|
|
"z"]
|
|
|
|
# "subtract" the country polygon
|
|
commands.append(f"M {polygon[0][0]} {polygon[0][1]}")
|
|
|
|
# add lines for each polygon point
|
|
for point in polygon[1:]:
|
|
commands.append(f"L {point[0]} {point[1]}")
|
|
|
|
# ensure straight closing line
|
|
commands.append(f"L {polygon[0][0]} {polygon[0][1]}")
|
|
|
|
# close the inner path
|
|
commands.append("z")
|
|
|
|
return doc.path(commands, **kwargs)
|
|
|
|
|
|
def render(ref_lat, ref_lon, output_stream):
|
|
random.seed(0)
|
|
|
|
print("Loading Geodata…", file=sys.stderr)
|
|
|
|
with open('geo-countries/data/countries.geojson', 'r') as jfile:
|
|
geojson = json.load(jfile)
|
|
|
|
print("Finding boundaries…", file=sys.stderr)
|
|
|
|
# key: 3-letter country identifier
|
|
# data: {full_name,
|
|
# numpy.array(coordinates),
|
|
# numpy.array(proj_coordinates)}.
|
|
# coordinates is a list of 2xN arrays, where N is the number of points.
|
|
# Row 0 contains the longitude, Row 1 the latitude.
|
|
# proj_coordinates is a list of 2xN arrays, where N is the number of
|
|
# points. Row 0 contains the projected x, Row 1 the projected y.
|
|
simplegeodata = {}
|
|
|
|
features = geojson['features']
|
|
|
|
for feature in features:
|
|
name = feature['properties']['ADMIN']
|
|
key = feature['properties']['ISO_A2']
|
|
|
|
# handle duplicate keys (can happen for small countries)
|
|
if key in simplegeodata.keys():
|
|
key = name
|
|
|
|
print(f"Preparing {key} ({name})…", file=sys.stderr)
|
|
|
|
multipoly = feature['geometry']['coordinates']
|
|
|
|
conv_polys = []
|
|
|
|
for poly in multipoly:
|
|
for subpoly in poly:
|
|
coords_list = [] # list of lists
|
|
|
|
assert(len(subpoly[0]) == 2)
|
|
coords_list += subpoly
|
|
|
|
# convert coordinates to numpy array and radians
|
|
coords = np.array(coords_list).T * np.pi / 180
|
|
|
|
conv_polys.append(coords)
|
|
|
|
simplegeodata[key] = {"name": name, "coordinates": conv_polys}
|
|
|
|
ref_lat = ref_lat * np.pi / 180
|
|
ref_lon = ref_lon * np.pi / 180
|
|
|
|
antipodal_lat = -ref_lat
|
|
antipodal_lon = ref_lon + np.pi
|
|
|
|
if antipodal_lon > np.pi:
|
|
antipodal_lon -= 2*np.pi
|
|
|
|
R = 500
|
|
|
|
"""
|
|
# Override data with test coordinate system
|
|
coords = []
|
|
|
|
N = 128
|
|
|
|
# constant-latitude circles
|
|
coords.append(np.array([np.linspace(-np.pi, np.pi, N),
|
|
np.ones(N) * np.pi/4]))
|
|
coords.append(np.array([np.linspace(-np.pi, np.pi, N),
|
|
np.ones(N) * 0]))
|
|
coords.append(np.array([np.linspace(-np.pi, np.pi, N),
|
|
np.ones(N) * -np.pi/4]))
|
|
|
|
# constant-longitude half-circles
|
|
coords.append(np.array([np.ones(N) * -4*np.pi/4,
|
|
np.linspace(-np.pi/2, np.pi/2, N)]))
|
|
coords.append(np.array([np.ones(N) * -3*np.pi/4,
|
|
np.linspace(-np.pi/2, np.pi/2, N)]))
|
|
coords.append(np.array([np.ones(N) * -2*np.pi/4,
|
|
np.linspace(-np.pi/2, np.pi/2, N)]))
|
|
coords.append(np.array([np.ones(N) * -1*np.pi/4,
|
|
np.linspace(-np.pi/2, np.pi/2, N)]))
|
|
coords.append(np.array([np.ones(N) * 0*np.pi/4,
|
|
np.linspace(-np.pi/2, np.pi/2, N)]))
|
|
coords.append(np.array([np.ones(N) * 1*np.pi/4,
|
|
np.linspace(-np.pi/2, np.pi/2, N)]))
|
|
coords.append(np.array([np.ones(N) * 2*np.pi/4,
|
|
np.linspace(-np.pi/2, np.pi/2, N)]))
|
|
coords.append(np.array([np.ones(N) * 3*np.pi/4,
|
|
np.linspace(-np.pi/2, np.pi/2, N)]))
|
|
|
|
simplegeodata = {"XY": {'name': 'test', 'coordinates': coords}}
|
|
"""
|
|
|
|
# apply azimuthal equidistant projection
|
|
for k, v in simplegeodata.items():
|
|
proj_polys = []
|
|
|
|
for poly in v['coordinates']:
|
|
lat = poly[1, :]
|
|
lon = poly[0, :]
|
|
|
|
x, y = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon, R)
|
|
|
|
coords = np.array([x, y])
|
|
|
|
# remove any points that contain a NaN coordinate
|
|
coords = coords[:, np.any(np.invert(np.isnan(coords)), axis=0)]
|
|
|
|
proj_polys.append(coords)
|
|
|
|
v['proj_coordinates'] = proj_polys
|
|
|
|
# generate the SVG
|
|
|
|
doc = svgwrite.Drawing("/tmp/test.svg", size=(2*R, 2*R))
|
|
|
|
doc.defs.add(doc.style("""
|
|
.country {
|
|
stroke: black;
|
|
stroke-width: 0.01px;
|
|
}
|
|
|
|
.dist_circle_label, .azimuth_line_label {
|
|
font-size: 3px;
|
|
font: sans-serif;
|
|
text-anchor: middle;
|
|
}
|
|
|
|
.dist_circle, .azimuth_line {
|
|
fill: none;
|
|
stroke: black;
|
|
stroke-width: 0.1px;
|
|
}
|
|
|
|
.maidenhead_line {
|
|
fill: none;
|
|
stroke: red;
|
|
stroke-width: 0.1px;
|
|
opacity: 0.5;
|
|
}
|
|
"""))
|
|
|
|
doc.add(doc.circle(center=(R, R), r=R, fill='#ddeeff',
|
|
stroke_width=1, stroke='black'))
|
|
|
|
for k, v in simplegeodata.items():
|
|
print(f"Exporting {k}…", file=sys.stderr)
|
|
|
|
color = random_country_color()
|
|
|
|
group = doc.g()
|
|
|
|
for i in range(len(v['proj_coordinates'])):
|
|
poly = v['proj_coordinates'][i]
|
|
points = poly.T + R # shift to the center of the drawing
|
|
|
|
# check if the antipodal point is inside this polygon. If so, it
|
|
# needs to be "inverted", i.e. subtracted from the surrounding map
|
|
# circle.
|
|
|
|
if is_point_in_polygon((antipodal_lon, antipodal_lat),
|
|
v['coordinates'][i].T):
|
|
print("!!! Found polygon containing the antipodal point!",
|
|
file=sys.stderr)
|
|
obj = svg_make_inverse_country_path(doc, R, np.flipud(points),
|
|
**{'class': 'country',
|
|
'fill': color})
|
|
else:
|
|
obj = doc.polygon(points, **{
|
|
'class': 'country',
|
|
'fill': color})
|
|
|
|
group.add(obj)
|
|
|
|
group.set_desc(title=v['name'])
|
|
doc.add(group)
|
|
|
|
# generate equidistant circles
|
|
|
|
d_max = 40075/2
|
|
for distance in [500, 1000, 2000, 3000, 4000, 5000, 6000, 8000, 10000,
|
|
12000, 14000, 16000, 18000, 20000]:
|
|
r = R * distance / d_max
|
|
doc.add(doc.circle(center=(R, R), r=r,
|
|
**{'class': 'dist_circle'}))
|
|
|
|
doc.add(doc.text(f"{distance} km", (R, R-r+5),
|
|
**{'class': 'dist_circle_label'}))
|
|
|
|
# generate azimuth lines in 30° steps
|
|
|
|
for azimuth in np.arange(0, np.pi, np.pi/6):
|
|
start_x = R + R * np.cos(azimuth-np.pi/2)
|
|
start_y = R + R * np.sin(azimuth-np.pi/2)
|
|
end_x = R - R * np.cos(azimuth-np.pi/2)
|
|
end_y = R - R * np.sin(azimuth-np.pi/2)
|
|
|
|
doc.add(doc.line((start_x, start_y), (end_x, end_y),
|
|
**{'class': 'azimuth_line'}))
|
|
|
|
azimuth_deg = int(np.round(azimuth * 180 / np.pi))
|
|
textpos = (2*R - 10, R - 2)
|
|
|
|
txt = doc.text(f"{azimuth_deg:d} °", textpos,
|
|
**{'class': 'azimuth_line_label'})
|
|
txt.rotate(azimuth_deg - 90, center=(R, R))
|
|
doc.add(txt)
|
|
|
|
txt = doc.text(f"{azimuth_deg+180:d} °", textpos,
|
|
**{'class': 'azimuth_line_label'})
|
|
txt.rotate(azimuth_deg - 90 + 180, center=(R, R))
|
|
doc.add(txt)
|
|
|
|
# generate Maidenhead locator grid (first two letters only)
|
|
|
|
group = doc.g()
|
|
|
|
N = 18 # subdivisions of Earth
|
|
resolution = 4096
|
|
|
|
for x in range(0, N):
|
|
lon = x * 2 * np.pi / N
|
|
lat = np.linspace(-np.pi/2, np.pi/2, resolution)
|
|
|
|
x, y = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon, R)
|
|
points = np.array([x, y]).T + R
|
|
|
|
group.add(doc.polyline(points, **{'class': 'maidenhead_line'}))
|
|
|
|
for y in range(0, N):
|
|
lon = np.linspace(-np.pi, np.pi, resolution)
|
|
lat = y * np.pi / N - np.pi/2
|
|
|
|
x, y = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon, R)
|
|
points = np.array([x, y]).T + R
|
|
|
|
group.add(doc.polyline(points, **{'class': 'maidenhead_line'}))
|
|
|
|
doc.add(group)
|
|
|
|
"""
|
|
for x in range(0, 26):
|
|
for y in range(0, 26):
|
|
sectorname = chr(ord('A')+x) + chr(ord('A')+y)
|
|
"""
|
|
|
|
print("Writing output…", file=sys.stderr)
|
|
doc.write(output_stream, pretty=True)
|
|
|
|
return
|
|
|
|
# Debug Plot
|
|
|
|
for k, v in simplegeodata.items():
|
|
for poly in v['proj_coordinates']:
|
|
pp.plot(poly[0, :], poly[1, :])
|
|
|
|
pp.plot([-1, 1], [0, 0], 'k', linewidth=0.5)
|
|
pp.plot([0, 0], [-1, 1], 'k', linewidth=0.5)
|
|
|
|
t = np.linspace(-np.pi, np.pi, 256)
|
|
ct, st = np.cos(t), np.sin(t)
|
|
pp.plot(ct, st, 'k', linewidth=0.5)
|
|
|
|
U = 40075
|
|
for distance in np.arange(0, U/2, 2000):
|
|
f = distance / (U/2)
|
|
pp.plot(f*ct, f*st, 'k', linewidth=0.2)
|
|
|
|
pp.axis('equal')
|
|
|
|
pp.show()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(
|
|
description="Render an azimuthal equidistant map of the world " +
|
|
"centered on the given point")
|
|
|
|
parser.add_argument(metavar='ref-lat', type=float, dest='ref_lat',
|
|
help='Reference Latitude')
|
|
parser.add_argument(metavar='ref-lon', type=float, dest='ref_lon',
|
|
help='Reference Longitude')
|
|
parser.add_argument('-o', '--output-file', type=argparse.FileType('w'),
|
|
help='The output SVG file (default: print to stdout)',
|
|
default=sys.stdout)
|
|
|
|
args = parser.parse_args()
|
|
|
|
render(args.ref_lat, args.ref_lon, args.output_file)
|