Initial version: loads GeoJSON and generates SVG map

This commit is contained in:
Thomas Kolb 2021-05-29 15:22:29 +02:00
commit f676af2fde
3 changed files with 259 additions and 0 deletions

3
.gitmodules vendored Normal file
View file

@ -0,0 +1,3 @@
[submodule "geo-countries"]
path = geo-countries
url = https://github.com/datasets/geo-countries

1
geo-countries Submodule

@ -0,0 +1 @@
Subproject commit cd9e0635901eac20294a57ee3b3ce0684d5e3f1a

255
qsomap.py Executable file
View file

@ -0,0 +1,255 @@
#!/usr/bin/env python3
import svgwrite
import numpy as np
import matplotlib.pyplot as pp
from matplotlib.colors import hsv_to_rgb
import json
import random
REF_LATITUDE = 49.58666
REF_LONGITUDE = 11.01250
# REF_LATITUDE = 1
# REF_LONGITUDE = 0
def map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon, R=1):
""" Azimuthal equidistant projection.
This function takes a point to map in latitude/longitude format as well as
a reference point which becomes the "center" of the map.
It then projects the point into the 2D plane such that the distance from
the center is proportional to the distance on the Great Circle through the
projected and the reference point. The angle represents the azimuthal
direction of the projected point.
Args:
lat(numpy.array): Latitudes of the point to project.
lon(numpy.array): Longitudes of the point to project.
ref_lat(float): Latitude of the reference point.
ref_lon(float): Longitude of the reference point.
R(float): Radius (scale) of the map.
Returns:
x(numpy.array): The calculated x coordinates.
y(numpy.array): The calculated y coordinates.
"""
dlon = lon - ref_lon
rho_linear_norm = np.arccos(np.sin(ref_lat) * np.sin(lat)
+ np.cos(ref_lat)
* np.cos(lat) * np.cos(dlon)) / np.pi
rho = R * rho_linear_norm
theta = np.arctan2(np.cos(lat) * np.sin(dlon),
(np.cos(ref_lat) * np.sin(lat)
- np.sin(ref_lat) * np.cos(lat)
* np.cos(dlon)))
x = rho * np.sin(theta)
y = -rho * np.cos(theta)
return x, y
def random_country_color():
h = random.random()
s = 0.7
v = 0.8
r, g, b = [int(255.99*x) for x in hsv_to_rgb([h, s, v])]
return f"#{r:02x}{g:02x}{b:02x}"
random.seed(0)
""" Test code
test_lat = [np.pi/2, np.pi/4, 0, -np.pi/4, -np.pi/2]
test_lon = np.arange(-np.pi, np.pi, np.pi/4)
for lat in test_lat:
for lon in test_lon:
x, y = map_azimuthal_equidistant(np.array([lat]), np.array([lon]), np.pi/2, 0)
print(f"{lat*180/np.pi:6.3f}, {lon*180/np.pi:6.3f} => {x[0]:6.3f}, {y[0]:6.3f}")
"""
print("Loading Geodata…")
with open('geo-countries/data/countries.geojson', 'r') as jfile:
geojson = json.load(jfile)
print("Finding boundaries…")
# key: 3-letter country identifier
# data: {full_name, numpy.array(coordinates), numpy.array(proj_coordinates)}.
# coordinates is a list of 2xN arrays, where N is the number of points. Row 0
# contains the longitude, Row 1 the latitude.
# proj_coordinates is a list of 2xN arrays, where N is the number of points.
# Row 0 contains the projected x, Row 1 the projected y.
simplegeodata = {}
features = geojson['features']
for feature in features:
name = feature['properties']['ADMIN']
key = feature['properties']['ISO_A2']
# handle duplicate keys (can happen for small countries)
if key in simplegeodata.keys():
key = name
print(f"Preparing {key} ({name})…")
multipoly = feature['geometry']['coordinates']
conv_polys = []
for poly in multipoly:
for subpoly in poly:
coords_list = [] # list of lists
assert(len(subpoly[0]) == 2)
coords_list += subpoly
# convert coordinates to numpy array and radians
coords = np.array(coords_list).T * np.pi / 180
conv_polys.append(coords)
simplegeodata[key] = {"name": name, "coordinates": conv_polys}
ref_lat = REF_LATITUDE * np.pi / 180
ref_lon = REF_LONGITUDE * np.pi / 180
R = 500
"""
# Override data with test coordinate system
coords = []
N = 128
# constant-latitude circles
coords.append(np.array([np.linspace(-np.pi, np.pi, N),
np.ones(N) * np.pi/4]))
coords.append(np.array([np.linspace(-np.pi, np.pi, N),
np.ones(N) * 0]))
coords.append(np.array([np.linspace(-np.pi, np.pi, N),
np.ones(N) * -np.pi/4]))
# constant-longitude half-circles
coords.append(np.array([np.ones(N) * -4*np.pi/4,
np.linspace(-np.pi/2, np.pi/2, N)]))
coords.append(np.array([np.ones(N) * -3*np.pi/4,
np.linspace(-np.pi/2, np.pi/2, N)]))
coords.append(np.array([np.ones(N) * -2*np.pi/4,
np.linspace(-np.pi/2, np.pi/2, N)]))
coords.append(np.array([np.ones(N) * -1*np.pi/4,
np.linspace(-np.pi/2, np.pi/2, N)]))
coords.append(np.array([np.ones(N) * 0*np.pi/4,
np.linspace(-np.pi/2, np.pi/2, N)]))
coords.append(np.array([np.ones(N) * 1*np.pi/4,
np.linspace(-np.pi/2, np.pi/2, N)]))
coords.append(np.array([np.ones(N) * 2*np.pi/4,
np.linspace(-np.pi/2, np.pi/2, N)]))
coords.append(np.array([np.ones(N) * 3*np.pi/4,
np.linspace(-np.pi/2, np.pi/2, N)]))
simplegeodata = {"XY": {'name': 'test', 'coordinates': coords}}
"""
# apply azimuthal equidistant projection
for k, v in simplegeodata.items():
proj_polys = []
for poly in v['coordinates']:
lat = poly[1, :]
lon = poly[0, :]
x, y = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon, R)
coords = np.array([x, y])
# remove any points that contain a NaN coordinate
coords = coords[:, np.any(np.invert(np.isnan(coords)), axis=0)]
proj_polys.append(coords)
v['proj_coordinates'] = proj_polys
#print(simplegeodata['AW']['proj_coordinates'])
###print(simplegeodata['DE']['proj_coordinates'])
#debug plot
# generate the SVG
doc = svgwrite.Drawing("/tmp/test.svg", size=(2*R, 2*R))
doc.defs.add(doc.style("""
.country {
stroke: black;
stroke-width: 0.01;
}
"""))
doc.add(doc.circle(center=(R, R), r=R, fill='#ddeeff',
stroke_width=1, stroke='black'))
for k, v in simplegeodata.items():
print(f"Exporting {k}")
color = random_country_color()
group = doc.g()
for poly in v['proj_coordinates']:
points = poly.T + R # shift to the center of the drawing
pgon = doc.polygon(points, **{
'class': 'country',
'fill': color})
group.add(pgon)
group.set_desc(title=v['name'])
doc.add(group)
# generate equidistant circles
d_max = 40075/2
for distance in [500, 1000, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000,
14000, 16000, 18000, 20000]:
r = R * distance / d_max
doc.add(doc.circle(center=(R, R), r=r, fill='none',
stroke_width=0.1, stroke='black'))
print(f"Saving {doc.filename}")
doc.save(pretty=True)
exit(0)
# Debug Plot
for k, v in simplegeodata.items():
for poly in v['proj_coordinates']:
pp.plot(poly[0, :], poly[1, :])
pp.plot([-1, 1], [0, 0], 'k', linewidth=0.5)
pp.plot([0, 0], [-1, 1], 'k', linewidth=0.5)
t = np.linspace(-np.pi, np.pi, 256)
ct, st = np.cos(t), np.sin(t)
pp.plot(ct, st, 'k', linewidth=0.5)
U = 40075
for distance in np.arange(0, U/2, 2000):
f = distance / (U/2)
pp.plot(f*ct, f*st, 'k', linewidth=0.2)
pp.axis('equal')
pp.show()