Support for command line arguments

This commit is contained in:
Thomas Kolb 2021-05-30 22:20:40 +02:00
parent af794b0598
commit a766274d79

185
qsomap.py
View file

@ -1,16 +1,18 @@
#!/usr/bin/env python3
import sys
import svgwrite
import numpy as np
import matplotlib.pyplot as pp
from matplotlib.colors import hsv_to_rgb
import json
import random
import argparse
REF_LATITUDE = 49.58666
REF_LONGITUDE = 11.01250
# REF_LATITUDE = 1
# REF_LONGITUDE = 0
# REF_LATITUDE = -30
# REF_LONGITUDE = 90
def map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon, R=1):
@ -63,37 +65,38 @@ def random_country_color():
return f"#{r:02x}{g:02x}{b:02x}"
random.seed(0)
def render(ref_lat, ref_lon, output_stream):
random.seed(0)
""" Test code
test_lat = [np.pi/2, np.pi/4, 0, -np.pi/4, -np.pi/2]
test_lon = np.arange(-np.pi, np.pi, np.pi/4)
""" Test code
test_lat = [np.pi/2, np.pi/4, 0, -np.pi/4, -np.pi/2]
test_lon = np.arange(-np.pi, np.pi, np.pi/4)
for lat in test_lat:
for lat in test_lat:
for lon in test_lon:
x, y = map_azimuthal_equidistant(np.array([lat]), np.array([lon]), np.pi/2, 0)
print(f"{lat*180/np.pi:6.3f}, {lon*180/np.pi:6.3f} => {x[0]:6.3f}, {y[0]:6.3f}")
"""
print(f"{lat*180/np.pi:6.3f}, {lon*180/np.pi:6.3f} => {x[0]:6.3f}, {y[0]:6.3f}", file=sys.stderr)
"""
print("Loading Geodata…")
print("Loading Geodata…", file=sys.stderr)
with open('geo-countries/data/countries.geojson', 'r') as jfile:
with open('geo-countries/data/countries.geojson', 'r') as jfile:
geojson = json.load(jfile)
print("Finding boundaries…")
print("Finding boundaries…", file=sys.stderr)
# key: 3-letter country identifier
# data: {full_name, numpy.array(coordinates), numpy.array(proj_coordinates)}.
# coordinates is a list of 2xN arrays, where N is the number of points. Row 0
# contains the longitude, Row 1 the latitude.
# proj_coordinates is a list of 2xN arrays, where N is the number of points.
# Row 0 contains the projected x, Row 1 the projected y.
simplegeodata = {}
# key: 3-letter country identifier
# data: {full_name, numpy.array(coordinates), numpy.array(proj_coordinates)}.
# coordinates is a list of 2xN arrays, where N is the number of points. Row 0
# contains the longitude, Row 1 the latitude.
# proj_coordinates is a list of 2xN arrays, where N is the number of points.
# Row 0 contains the projected x, Row 1 the projected y.
simplegeodata = {}
features = geojson['features']
features = geojson['features']
for feature in features:
for feature in features:
name = feature['properties']['ADMIN']
key = feature['properties']['ISO_A2']
@ -101,7 +104,7 @@ for feature in features:
if key in simplegeodata.keys():
key = name
print(f"Preparing {key} ({name})…")
print(f"Preparing {key} ({name})…", file=sys.stderr)
multipoly = feature['geometry']['coordinates']
@ -121,48 +124,48 @@ for feature in features:
simplegeodata[key] = {"name": name, "coordinates": conv_polys}
ref_lat = REF_LATITUDE * np.pi / 180
ref_lon = REF_LONGITUDE * np.pi / 180
ref_lat = ref_lat * np.pi / 180
ref_lon = ref_lon * np.pi / 180
R = 500
R = 500
"""
# Override data with test coordinate system
coords = []
"""
# Override data with test coordinate system
coords = []
N = 128
N = 128
# constant-latitude circles
coords.append(np.array([np.linspace(-np.pi, np.pi, N),
# constant-latitude circles
coords.append(np.array([np.linspace(-np.pi, np.pi, N),
np.ones(N) * np.pi/4]))
coords.append(np.array([np.linspace(-np.pi, np.pi, N),
coords.append(np.array([np.linspace(-np.pi, np.pi, N),
np.ones(N) * 0]))
coords.append(np.array([np.linspace(-np.pi, np.pi, N),
coords.append(np.array([np.linspace(-np.pi, np.pi, N),
np.ones(N) * -np.pi/4]))
# constant-longitude half-circles
coords.append(np.array([np.ones(N) * -4*np.pi/4,
# constant-longitude half-circles
coords.append(np.array([np.ones(N) * -4*np.pi/4,
np.linspace(-np.pi/2, np.pi/2, N)]))
coords.append(np.array([np.ones(N) * -3*np.pi/4,
coords.append(np.array([np.ones(N) * -3*np.pi/4,
np.linspace(-np.pi/2, np.pi/2, N)]))
coords.append(np.array([np.ones(N) * -2*np.pi/4,
coords.append(np.array([np.ones(N) * -2*np.pi/4,
np.linspace(-np.pi/2, np.pi/2, N)]))
coords.append(np.array([np.ones(N) * -1*np.pi/4,
coords.append(np.array([np.ones(N) * -1*np.pi/4,
np.linspace(-np.pi/2, np.pi/2, N)]))
coords.append(np.array([np.ones(N) * 0*np.pi/4,
coords.append(np.array([np.ones(N) * 0*np.pi/4,
np.linspace(-np.pi/2, np.pi/2, N)]))
coords.append(np.array([np.ones(N) * 1*np.pi/4,
coords.append(np.array([np.ones(N) * 1*np.pi/4,
np.linspace(-np.pi/2, np.pi/2, N)]))
coords.append(np.array([np.ones(N) * 2*np.pi/4,
coords.append(np.array([np.ones(N) * 2*np.pi/4,
np.linspace(-np.pi/2, np.pi/2, N)]))
coords.append(np.array([np.ones(N) * 3*np.pi/4,
coords.append(np.array([np.ones(N) * 3*np.pi/4,
np.linspace(-np.pi/2, np.pi/2, N)]))
simplegeodata = {"XY": {'name': 'test', 'coordinates': coords}}
"""
simplegeodata = {"XY": {'name': 'test', 'coordinates': coords}}
"""
# apply azimuthal equidistant projection
for k, v in simplegeodata.items():
# apply azimuthal equidistant projection
for k, v in simplegeodata.items():
proj_polys = []
for poly in v['coordinates']:
@ -181,11 +184,11 @@ for k, v in simplegeodata.items():
v['proj_coordinates'] = proj_polys
# generate the SVG
# generate the SVG
doc = svgwrite.Drawing("/tmp/test.svg", size=(2*R, 2*R))
doc = svgwrite.Drawing("/tmp/test.svg", size=(2*R, 2*R))
doc.defs.add(doc.style("""
doc.defs.add(doc.style("""
.country {
stroke: black;
stroke-width: 0.01px;
@ -209,13 +212,13 @@ doc.defs.add(doc.style("""
stroke-width: 0.1px;
opacity: 0.5;
}
"""))
"""))
doc.add(doc.circle(center=(R, R), r=R, fill='#ddeeff',
doc.add(doc.circle(center=(R, R), r=R, fill='#ddeeff',
stroke_width=1, stroke='black'))
for k, v in simplegeodata.items():
print(f"Exporting {k}")
for k, v in simplegeodata.items():
print(f"Exporting {k}", file=sys.stderr)
color = random_country_color()
@ -233,10 +236,10 @@ for k, v in simplegeodata.items():
group.set_desc(title=v['name'])
doc.add(group)
# generate equidistant circles
# generate equidistant circles
d_max = 40075/2
for distance in [500, 1000, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000,
d_max = 40075/2
for distance in [500, 1000, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000,
14000, 16000, 18000, 20000]:
r = R * distance / d_max
doc.add(doc.circle(center=(R, R), r=r,
@ -245,9 +248,9 @@ for distance in [500, 1000, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000,
doc.add(doc.text(f"{distance} km", (R, R-r+5),
**{'class': 'dist_circle_label'}))
# generate azimuth lines in 30° steps
# generate azimuth lines in 30° steps
for azimuth in np.arange(0, np.pi, np.pi/6):
for azimuth in np.arange(0, np.pi, np.pi/6):
start_x = R + R * np.cos(azimuth-np.pi/2)
start_y = R + R * np.sin(azimuth-np.pi/2)
end_x = R - R * np.cos(azimuth-np.pi/2)
@ -269,14 +272,14 @@ for azimuth in np.arange(0, np.pi, np.pi/6):
txt.rotate(azimuth_deg - 90 + 180, center=(R, R))
doc.add(txt)
# generate Maidenhead locator grid (first two letters only)
# generate Maidenhead locator grid (first two letters only)
group = doc.g()
group = doc.g()
N = 18 # subdivisions of Earth
resolution = 4096
N = 18 # subdivisions of Earth
resolution = 4096
for x in range(0, N):
for x in range(0, N):
lon = x * 2 * np.pi / N
lat = np.linspace(-np.pi/2, np.pi/2, resolution)
@ -285,7 +288,7 @@ for x in range(0, N):
group.add(doc.polyline(points, **{'class': 'maidenhead_line'}))
for y in range(0, N):
for y in range(0, N):
lon = np.linspace(-np.pi, np.pi, resolution)
lat = y * np.pi / N - np.pi/2
@ -294,39 +297,55 @@ for y in range(0, N):
group.add(doc.polyline(points, **{'class': 'maidenhead_line'}))
doc.add(group)
doc.add(group)
"""
for x in range(0, 26):
"""
for x in range(0, 26):
for y in range(0, 26):
sectorname = chr(ord('A')+x) + chr(ord('A')+y)
"""
"""
print(f"Writing output…", file=sys.stderr)
doc.write(output_stream, pretty=True)
print(f"Saving {doc.filename}")
doc.save(pretty=True)
return
exit(0)
# Debug Plot
# Debug Plot
for k, v in simplegeodata.items():
for k, v in simplegeodata.items():
for poly in v['proj_coordinates']:
pp.plot(poly[0, :], poly[1, :])
pp.plot([-1, 1], [0, 0], 'k', linewidth=0.5)
pp.plot([0, 0], [-1, 1], 'k', linewidth=0.5)
pp.plot([-1, 1], [0, 0], 'k', linewidth=0.5)
pp.plot([0, 0], [-1, 1], 'k', linewidth=0.5)
t = np.linspace(-np.pi, np.pi, 256)
ct, st = np.cos(t), np.sin(t)
pp.plot(ct, st, 'k', linewidth=0.5)
t = np.linspace(-np.pi, np.pi, 256)
ct, st = np.cos(t), np.sin(t)
pp.plot(ct, st, 'k', linewidth=0.5)
U = 40075
for distance in np.arange(0, U/2, 2000):
U = 40075
for distance in np.arange(0, U/2, 2000):
f = distance / (U/2)
pp.plot(f*ct, f*st, 'k', linewidth=0.2)
pp.axis('equal')
pp.axis('equal')
pp.show()
pp.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Render an azimuthal equidistant map of the world " +
"centered on the given point")
parser.add_argument(metavar='ref-lat', type=float, dest='ref_lat',
help='Reference Latitude')
parser.add_argument(metavar='ref-lon', type=float, dest='ref_lon',
help='Reference Longitude')
parser.add_argument('-o', '--output-file', type=argparse.FileType('w'),
help='The output SVG file (default: print to stdout)',
default=sys.stdout)
args = parser.parse_args()
render(args.ref_lat, args.ref_lon, args.output_file)