Refactoring: move processing steps to separate functions

This commit is contained in:
Thomas Kolb 2021-06-10 21:32:49 +02:00
parent 67caf16b14
commit 60f59379e5

322
qsomap.py
View file

@ -137,16 +137,7 @@ def svg_make_inverse_country_path(doc, map_radius, polygon, **kwargs):
return doc.path(commands, **kwargs) return doc.path(commands, **kwargs)
def render(ref_lat, ref_lon, output_stream): def simplify_geojson(geojson):
random.seed(0)
print("Loading Geodata…", file=sys.stderr)
with open('geo-countries/data/countries.geojson', 'r') as jfile:
geojson = json.load(jfile)
print("Finding boundaries…", file=sys.stderr)
# key: 3-letter country identifier # key: 3-letter country identifier
# data: {full_name, # data: {full_name,
# numpy.array(coordinates), # numpy.array(coordinates),
@ -187,15 +178,178 @@ def render(ref_lat, ref_lon, output_stream):
simplegeodata[key] = {"name": name, "coordinates": conv_polys} simplegeodata[key] = {"name": name, "coordinates": conv_polys}
ref_lat = ref_lat * np.pi / 180 return simplegeodata
ref_lon = ref_lon * np.pi / 180
def map_all_polygons(simplegeodata, ref_lat, ref_lon, map_radius):
# apply azimuthal equidistant projection
for k, v in simplegeodata.items():
proj_polys = []
for poly in v['coordinates']:
lat = poly[1, :]
lon = poly[0, :]
x, y = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon,
map_radius)
coords = np.array([x, y])
# remove any points that contain a NaN coordinate
coords = coords[:, np.any(np.invert(np.isnan(coords)), axis=0)]
proj_polys.append(coords)
v['proj_coordinates'] = proj_polys
def svg_add_countries(doc, simplegeodata, ref_lat, ref_lon, map_radius):
antipodal_lat = -ref_lat antipodal_lat = -ref_lat
antipodal_lon = ref_lon + np.pi antipodal_lon = ref_lon + np.pi
if antipodal_lon > np.pi: if antipodal_lon > np.pi:
antipodal_lon -= 2*np.pi antipodal_lon -= 2*np.pi
for k, v in simplegeodata.items():
print(f"Exporting {k}", file=sys.stderr)
color = random_country_color()
group = doc.g()
for i in range(len(v['proj_coordinates'])):
poly = v['proj_coordinates'][i]
points = poly.T + map_radius # shift to the center of the drawing
# check if the antipodal point is inside this polygon. If so, it
# needs to be "inverted", i.e. subtracted from the surrounding map
# circle.
if is_point_in_polygon((antipodal_lon, antipodal_lat),
v['coordinates'][i].T):
print("!!! Found polygon containing the antipodal point!",
file=sys.stderr)
obj = svg_make_inverse_country_path(doc, map_radius,
np.flipud(points),
**{'class': 'country',
'fill': color})
else:
obj = doc.polygon(points, **{
'class': 'country',
'fill': color})
group.add(obj)
group.set_desc(title=v['name'])
doc.add(group)
def svg_add_maidenhead_grid(doc, ref_lat, ref_lon, map_radius):
# generate Maidenhead locator grid (first two letters only)
group = doc.g()
N = 18 # subdivisions of Earth
resolution = 4096
for x in range(0, N):
lon = x * 2 * np.pi / N
lat = np.linspace(-np.pi/2, np.pi/2, resolution)
x, y = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon, map_radius)
points = np.array([x, y]).T + map_radius
group.add(doc.polyline(points, **{'class': 'maidenhead_line'}))
for y in range(0, N):
lon = np.linspace(-np.pi, np.pi, resolution)
lat = y * np.pi / N - np.pi/2
x, y = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon,
map_radius)
points = np.array([x, y]).T + map_radius
group.add(doc.polyline(points, **{'class': 'maidenhead_line'}))
for x in range(0, N):
for y in range(0, N):
sectorname = chr(ord('A') + (x + N//2) % N) \
+ chr(ord('A') + y)
lon = (x + 0.5) * 2 * np.pi / N
lat = (y + 0.5) * np.pi / N - np.pi/2
tx, ty = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon,
map_radius)
font_size = 10
if y == 0 or y == N-1:
font_size = 3
group.add(doc.text(sectorname, (tx + map_radius, ty + map_radius),
**{'class': 'maidenhead_label',
'font-size': font_size}))
doc.add(group) # Maidenhead grid
def svg_add_distance_azimuth_lines(doc, ref_lat, ref_lon, map_radius):
group = doc.g()
# generate equidistant circles
d_max = 40075/2
for distance in [500, 1000, 2000, 3000, 4000, 5000, 6000, 8000, 10000,
12000, 14000, 16000, 18000, 20000]:
r = map_radius * distance / d_max
group.add(doc.circle(center=(map_radius, map_radius), r=r,
**{'class': 'dist_circle'}))
group.add(doc.text(f"{distance} km", (map_radius, map_radius-r+5),
**{'class': 'dist_circle_label'}))
# generate azimuth lines in 30° steps
for azimuth in np.arange(0, np.pi, np.pi/6):
start_x = map_radius + map_radius * np.cos(azimuth-np.pi/2)
start_y = map_radius + map_radius * np.sin(azimuth-np.pi/2)
end_x = map_radius - map_radius * np.cos(azimuth-np.pi/2)
end_y = map_radius - map_radius * np.sin(azimuth-np.pi/2)
group.add(doc.line((start_x, start_y), (end_x, end_y),
**{'class': 'azimuth_line'}))
azimuth_deg = int(np.round(azimuth * 180 / np.pi))
textpos = (2*map_radius - 10, map_radius - 2)
txt = doc.text(f"{azimuth_deg:d} °", textpos,
**{'class': 'azimuth_line_label'})
txt.rotate(azimuth_deg - 90, center=(map_radius, map_radius))
group.add(txt)
txt = doc.text(f"{azimuth_deg+180:d} °", textpos,
**{'class': 'azimuth_line_label'})
txt.rotate(azimuth_deg - 90 + 180, center=(map_radius, map_radius))
group.add(txt)
doc.add(group) # Circles, azimuth lines and labels
def render(ref_lat, ref_lon, output_stream):
random.seed(0)
print("Loading Geodata…", file=sys.stderr)
with open('geo-countries/data/countries.geojson', 'r') as jfile:
geojson = json.load(jfile)
print("Finding boundaries…", file=sys.stderr)
simplegeodata = simplify_geojson(geojson)
ref_lat = ref_lat * np.pi / 180
ref_lon = ref_lon * np.pi / 180
R = 500 R = 500
""" """
@ -233,24 +387,7 @@ def render(ref_lat, ref_lon, output_stream):
simplegeodata = {"XY": {'name': 'test', 'coordinates': coords}} simplegeodata = {"XY": {'name': 'test', 'coordinates': coords}}
""" """
# apply azimuthal equidistant projection map_all_polygons(simplegeodata, ref_lat, ref_lon, R)
for k, v in simplegeodata.items():
proj_polys = []
for poly in v['coordinates']:
lat = poly[1, :]
lon = poly[0, :]
x, y = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon, R)
coords = np.array([x, y])
# remove any points that contain a NaN coordinate
coords = coords[:, np.any(np.invert(np.isnan(coords)), axis=0)]
proj_polys.append(coords)
v['proj_coordinates'] = proj_polys
# generate the SVG # generate the SVG
@ -294,128 +431,9 @@ def render(ref_lat, ref_lon, output_stream):
doc.add(doc.circle(center=(R, R), r=R, fill='#ddeeff', doc.add(doc.circle(center=(R, R), r=R, fill='#ddeeff',
stroke_width=1, stroke='black')) stroke_width=1, stroke='black'))
for k, v in simplegeodata.items(): svg_add_countries(doc, simplegeodata, ref_lat, ref_lon, R)
print(f"Exporting {k}", file=sys.stderr) svg_add_maidenhead_grid(doc, ref_lat, ref_lon, R)
svg_add_distance_azimuth_lines(doc, ref_lat, ref_lon, R)
color = random_country_color()
group = doc.g()
for i in range(len(v['proj_coordinates'])):
poly = v['proj_coordinates'][i]
points = poly.T + R # shift to the center of the drawing
# check if the antipodal point is inside this polygon. If so, it
# needs to be "inverted", i.e. subtracted from the surrounding map
# circle.
if is_point_in_polygon((antipodal_lon, antipodal_lat),
v['coordinates'][i].T):
print("!!! Found polygon containing the antipodal point!",
file=sys.stderr)
obj = svg_make_inverse_country_path(doc, R, np.flipud(points),
**{'class': 'country',
'fill': color})
else:
obj = doc.polygon(points, **{
'class': 'country',
'fill': color})
group.add(obj)
group.set_desc(title=v['name'])
doc.add(group)
# generate Maidenhead locator grid (first two letters only)
group = doc.g()
N = 18 # subdivisions of Earth
resolution = 4096
for x in range(0, N):
lon = x * 2 * np.pi / N
lat = np.linspace(-np.pi/2, np.pi/2, resolution)
x, y = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon, R)
points = np.array([x, y]).T + R
group.add(doc.polyline(points, **{'class': 'maidenhead_line'}))
for y in range(0, N):
lon = np.linspace(-np.pi, np.pi, resolution)
lat = y * np.pi / N - np.pi/2
x, y = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon, R)
points = np.array([x, y]).T + R
group.add(doc.polyline(points, **{'class': 'maidenhead_line'}))
for x in range(0, N):
for y in range(0, N):
sectorname = chr(ord('A') + (x + N//2) % N) \
+ chr(ord('A') + y)
lon = (x + 0.5) * 2 * np.pi / N
lat = (y + 0.5) * np.pi / N - np.pi/2
tx, ty = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon, R)
font_size = 10
if y == 0 or y == N-1:
font_size = 3
group.add(doc.text(sectorname, (tx + R, ty + R),
**{'class': 'maidenhead_label',
'font-size': font_size}))
doc.add(group) # Maidenhead grid
group = doc.g()
# generate equidistant circles
d_max = 40075/2
for distance in [500, 1000, 2000, 3000, 4000, 5000, 6000, 8000, 10000,
12000, 14000, 16000, 18000, 20000]:
r = R * distance / d_max
group.add(doc.circle(center=(R, R), r=r,
**{'class': 'dist_circle'}))
group.add(doc.text(f"{distance} km", (R, R-r+5),
**{'class': 'dist_circle_label'}))
# generate azimuth lines in 30° steps
for azimuth in np.arange(0, np.pi, np.pi/6):
start_x = R + R * np.cos(azimuth-np.pi/2)
start_y = R + R * np.sin(azimuth-np.pi/2)
end_x = R - R * np.cos(azimuth-np.pi/2)
end_y = R - R * np.sin(azimuth-np.pi/2)
group.add(doc.line((start_x, start_y), (end_x, end_y),
**{'class': 'azimuth_line'}))
azimuth_deg = int(np.round(azimuth * 180 / np.pi))
textpos = (2*R - 10, R - 2)
txt = doc.text(f"{azimuth_deg:d} °", textpos,
**{'class': 'azimuth_line_label'})
txt.rotate(azimuth_deg - 90, center=(R, R))
group.add(txt)
txt = doc.text(f"{azimuth_deg+180:d} °", textpos,
**{'class': 'azimuth_line_label'})
txt.rotate(azimuth_deg - 90 + 180, center=(R, R))
group.add(txt)
doc.add(group) # Circles, azimuth lines and labels
"""
for x in range(0, 26):
for y in range(0, 26):
sectorname = chr(ord('A')+x) + chr(ord('A')+y)
"""
print("Writing output…", file=sys.stderr) print("Writing output…", file=sys.stderr)
doc.write(output_stream, pretty=True) doc.write(output_stream, pretty=True)