Basic transmitter-only main loop

This commit is contained in:
Thomas Kolb 2022-03-05 21:38:05 +01:00
parent 3bc1d9625f
commit 152d2f02f6

View file

@ -1,5 +1,6 @@
#include <linux/if.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
@ -7,7 +8,10 @@
#include <liquid/liquid.h>
#include <sys/poll.h>
#include <unistd.h>
#include <fcntl.h>
#include <poll.h>
#include "utils.h"
#include "layer1/tx.h"
@ -15,6 +19,10 @@
#include "layer2/tundev.h"
#include "sdr/sdr.h"
#include "config.h"
#define RESULT_CHECK(stmt) { \
result_t res = stmt; \
if(res != OK) { \
@ -108,11 +116,65 @@ void cb_rx(rx_evt_t evt, uint8_t *packet_data, size_t packet_len)
}
static int debug_fd;
#define CHUNKSIZE_BB 512
#define CHUNKSIZE_RF (CHUNKSIZE_BB * SDR_OVERSAMPLING)
static result_t transmit_in_chunks(sdr_ctx_t *sdr, const float complex *samples, size_t len)
{
size_t transmitted = 0;
unsigned retry_counter = 0;
float complex rf_samples[CHUNKSIZE_RF];
while(transmitted < len) {
size_t to_transmit_bb = len - transmitted;
if(to_transmit_bb > CHUNKSIZE_BB) {
to_transmit_bb = CHUNKSIZE_BB;
}
RESULT_CHECK(sdr_baseband_to_rf(sdr, samples + transmitted, to_transmit_bb, rf_samples, CHUNKSIZE_RF));
size_t to_transmit_rf = to_transmit_bb * SDR_OVERSAMPLING;
result_t result = sdr_transmit(sdr, rf_samples, to_transmit_rf, 100000);
if(result != OK) {
retry_counter++;
fprintf(stderr, "sdr_transmit failed %d times\n", retry_counter);
if(retry_counter > 3) {
return result;
} else {
continue;
}
}
write(debug_fd, rf_samples, to_transmit_rf*sizeof(rf_samples[0]));
fprintf(stderr, "t");
transmitted += to_transmit_bb;
retry_counter = 0;
}
return OK;
}
int main(void)
{
layer1_tx_t tx;
layer1_rx_t rx;
sdr_ctx_t sdr;
bool on_air = false;
debug_fd = open("/tmp/dump.cf32", O_CREAT | O_WRONLY | O_TRUNC);
// ** Initialize **
char devname[IFNAMSIZ] = "hamnet70";
@ -122,68 +184,114 @@ int main(void)
return 1;
}
RESULT_CHECK(sdr_init(&sdr));
RESULT_CHECK(layer1_tx_init(&tx));
RESULT_CHECK(layer1_rx_init(&rx, cb_rx));
// channel emulation
channel_cccf channel = channel_cccf_create();
float snr = 15.0f;
channel_cccf_add_awgn(channel, -snr, snr);
channel_cccf_add_carrier_offset(channel, 0.20f, 1.00f);
//channel_cccf_add_shadowing(channel, 1.00f, 0.1f);
// ** Process packets **
uint8_t packetbuf[2048];
struct pollfd pfd;
memset(&pfd, 0, sizeof(pfd));
pfd.fd = m_tunfd;
pfd.events = POLLIN;
RESULT_CHECK(sdr_start_rx(&sdr));
unsigned rx_retries = 0;
float complex zeros[1024];
memset(zeros, 0, sizeof(zeros));
while(m_running) {
int ret = read(m_tunfd, packetbuf, sizeof(packetbuf));
if(ret < 0) {
perror("read");
break;
} else if(ret == 0) {
// no more data
break;
if(on_air || !layer1_rx_is_busy(&rx)) {
int ret = poll(&pfd, 1, 0);
if(ret < 0) {
perror("poll");
break;
} else if(ret > 0) {
// there is a packet to be read.
uint8_t packetbuf[2048];
ret = read(m_tunfd, packetbuf, sizeof(packetbuf));
if(ret < 0) {
perror("read");
break;
} else if(ret == 0) {
// no more data
break;
}
fprintf(stderr, "Transmitting packet with %d bytes.\n", ret);
RESULT_CHECK(layer1_tx_reset(&tx));
// ** Modulate packet **
RESULT_CHECK(layer1_tx_add_packet_to_burst(&tx, packetbuf, ret));
RESULT_CHECK(layer1_tx_finalize_burst(&tx));
size_t burst_len = layer1_tx_get_sample_count(&tx);
const float complex *whole_burst = layer1_tx_get_sample_data(&tx);
dump_array_cf(whole_burst, burst_len, 1.0f, "/tmp/tx.cpx");
if(!on_air) {
RESULT_CHECK(sdr_start_tx(&sdr));
}
RESULT_CHECK(transmit_in_chunks(&sdr, whole_burst, burst_len));
on_air = true;
} else if(on_air) { // ret == 0
//RESULT_CHECK(sdr_start_rx(&sdr));
//on_air = false;
fprintf(stderr, "z");
sdr_transmit(&sdr, zeros, sizeof(zeros)/sizeof(zeros[0]), 100000);
}
}
fprintf(stderr, "Transmitting packet with %d bytes.\n", ret);
if(!on_air) {
// ** Receive signal **
RESULT_CHECK(layer1_tx_reset(&tx));
float complex rf_samples[CHUNKSIZE_RF];
float complex bb_samples[CHUNKSIZE_BB];
// ** Modulate packet **
size_t n_rf_samples = CHUNKSIZE_RF;
size_t n_bb_samples;
RESULT_CHECK(layer1_tx_add_packet_to_burst(&tx, packetbuf, ret));
RESULT_CHECK(layer1_tx_finalize_burst(&tx));
if(sdr_receive(&sdr, rf_samples, &n_rf_samples, 100000) != OK) {
rx_retries++;
fprintf(stderr, "sdr_receive() failed %d times.\n", rx_retries);
if(rx_retries >= 3) {
break;
} else {
continue;
}
}
size_t burst_len = layer1_tx_get_sample_count(&tx);
const float complex *whole_burst = layer1_tx_get_sample_data(&tx);
rx_retries = 0;
dump_array_cf(whole_burst, burst_len, 1.0f, "/tmp/tx.cpx");
fprintf(stderr, "r");
// ** Apply channel distortions **
RESULT_CHECK(sdr_rf_to_baseband(&sdr, rf_samples, n_rf_samples, bb_samples, CHUNKSIZE_BB));
float complex msg_received[burst_len];
n_bb_samples = n_rf_samples / SDR_OVERSAMPLING;
channel_cccf_execute_block(channel, whole_burst, burst_len, msg_received);
// scale the entire signal to give the AGC something to do
for(size_t i = 0; i < burst_len; i++) {
msg_received[i] *= 0.02f;
RESULT_CHECK(layer1_rx_process(&rx, bb_samples, n_bb_samples));
} else {
rx_retries = 0;
}
dump_array_cf(msg_received, burst_len, 1.0f, "/tmp/rx.cpx");
// ** Receive signal **
RESULT_CHECK(layer1_rx_process(&rx, msg_received, burst_len));
}
// ** Cleanup **
close(debug_fd);
channel_cccf_destroy(channel);
// ** Cleanup **
layer1_tx_shutdown(&tx);
layer1_rx_shutdown(&rx);
sdr_destroy(&sdr);
fprintf(stderr, "Done.\n");
}