Compare commits

..

4 commits

Author SHA1 Message Date
cfr34k
4734b8eaeb Support multiple strips 2018-08-04 23:48:45 +00:00
cfr34k
fc7173afff Fixed types 2018-08-04 22:35:42 +00:00
7ca06eecd6 First shot at SPI interface 2018-07-31 23:11:12 +02:00
8bc5d05ec1 First steps towards RaspberryPi hat support
- Allow to have multiple faders/strips
- Added strip ID to UDP protocol
2018-07-30 22:57:39 +02:00
11 changed files with 339 additions and 244 deletions

View file

@ -14,11 +14,13 @@ set(sources
src/udpproto.c
src/utils.c
src/sk6812.c
src/hat_spi.c
src/fader.h
src/logger.h
src/udpproto.h
src/utils.h
src/sk6812.h
src/hat_spi.h
)
include_directories(

View file

@ -2,5 +2,5 @@
mkdir -p build
cd build
cmake ..
cmake -DCMAKE_BUILD_TYPE=Debug ..
make $@

View file

@ -6,102 +6,80 @@
#include "fader.h"
uint32_t numModules;
float fadestep = 1;
double nextFrame;
int somethingChanged = 0; // indicates when a sk6812 update is required
static const double interval = 1.0f / 75.0f;
struct Colour {
float red, green, blue, white; // value range is 0.0 to 255.0
};
struct Colour *curColour;
struct Colour *targetColour;
struct sk6812_ctx *ledCtx; // global context for the one strip we control
int fader_init(uint32_t nMod, struct sk6812_ctx *ctx)
int fader_init(struct fader_ctx *ctx, uint32_t nMod, struct sk6812_ctx *ledCtx)
{
numModules = nMod;
ctx->num_modules = nMod;
ctx->fadestep = 1;
curColour = malloc(nMod * sizeof(struct Colour));
if(!curColour) {
ctx->cur_colour = malloc(nMod * sizeof(struct fader_colour));
if(!ctx->cur_colour) {
LOG(LVL_ERR, "fader: could not allocate the array of current colours!");
return -1;
}
targetColour = malloc(nMod * sizeof(struct Colour));
if(!targetColour) {
ctx->target_colour = malloc(nMod * sizeof(struct fader_colour));
if(!ctx->target_colour) {
LOG(LVL_ERR, "fader: could not allocate the array of target colours!");
return -1;
}
for(uint32_t i = 0; i < numModules; i++) {
curColour[i].red = targetColour[i].red = 0;
curColour[i].green = targetColour[i].green = 0;
curColour[i].blue = targetColour[i].blue = 0;
curColour[i].white = targetColour[i].white = 0;
for(uint32_t i = 0; i < ctx->num_modules; i++) {
ctx->cur_colour[i].red = ctx->target_colour[i].red = 0;
ctx->cur_colour[i].green = ctx->target_colour[i].green = 0;
ctx->cur_colour[i].blue = ctx->target_colour[i].blue = 0;
ctx->cur_colour[i].white = ctx->target_colour[i].white = 0;
}
// store LED context (initalized externally)
ledCtx = ctx;
// timestamp for the first frame
nextFrame = get_hires_time() + interval;
ctx->led_ctx = ledCtx;
return 0;
}
void fader_shutdown(void)
void fader_shutdown(struct fader_ctx *ctx)
{
free(curColour);
free(targetColour);
free(ctx->cur_colour);
free(ctx->target_colour);
}
void fader_set_colour(uint32_t module, uint8_t r, uint8_t g, uint8_t b, uint8_t w)
void fader_set_colour(struct fader_ctx *ctx, uint32_t module, uint8_t r, uint8_t g, uint8_t b, uint8_t w)
{
curColour[module].red = targetColour[module].red = r;
curColour[module].green = targetColour[module].green = g;
curColour[module].blue = targetColour[module].blue = b;
curColour[module].white = targetColour[module].white = w;
ctx->cur_colour[module].red = ctx->target_colour[module].red = r;
ctx->cur_colour[module].green = ctx->target_colour[module].green = g;
ctx->cur_colour[module].blue = ctx->target_colour[module].blue = b;
ctx->cur_colour[module].white = ctx->target_colour[module].white = w;
somethingChanged = 1;
ctx->something_changed = 1;
}
void fader_fade_colour(uint32_t module, uint8_t r, uint8_t g, uint8_t b, uint8_t w)
void fader_fade_colour(struct fader_ctx *ctx, uint32_t module, uint8_t r, uint8_t g, uint8_t b, uint8_t w)
{
targetColour[module].red = r;
targetColour[module].green = g;
targetColour[module].blue = b;
targetColour[module].white = w;
ctx->target_colour[module].red = r;
ctx->target_colour[module].green = g;
ctx->target_colour[module].blue = b;
ctx->target_colour[module].white = w;
}
void fader_add_colour(uint32_t module, uint8_t r, uint8_t g, uint8_t b, uint8_t w)
void fader_add_colour(struct fader_ctx *ctx, uint32_t module, uint8_t r, uint8_t g, uint8_t b, uint8_t w)
{
curColour[module].red += r;
curColour[module].green += g;
curColour[module].blue += b;
curColour[module].white += w;
ctx->cur_colour[module].red += r;
ctx->cur_colour[module].green += g;
ctx->cur_colour[module].blue += b;
ctx->cur_colour[module].white += w;
if(curColour[module].red > 255) { curColour[module].red = 255; }
if(curColour[module].green > 255) { curColour[module].green = 255; }
if(curColour[module].blue > 255) { curColour[module].blue = 255; }
if(curColour[module].white > 255) { curColour[module].white = 255; }
if(ctx->cur_colour[module].red > 255) { ctx->cur_colour[module].red = 255; }
if(ctx->cur_colour[module].green > 255) { ctx->cur_colour[module].green = 255; }
if(ctx->cur_colour[module].blue > 255) { ctx->cur_colour[module].blue = 255; }
if(ctx->cur_colour[module].white > 255) { ctx->cur_colour[module].white = 255; }
targetColour[module] = curColour[module];
ctx->target_colour[module] = ctx->cur_colour[module];
somethingChanged = 1;
ctx->something_changed = 1;
}
void fader_set_fadestep(uint8_t newFadestep)
void fader_set_fadestep(struct fader_ctx *ctx, uint8_t newFadestep)
{
// The original avr implementition had a frame rate of 25fps (interval 0,04 sec.).
// This scales the fadestep to the current frame rate.
fadestep = (float)newFadestep * interval / 0.04f;
ctx->fadestep = newFadestep;
}
/*!
@ -111,53 +89,47 @@ void fader_set_fadestep(uint8_t newFadestep)
* \param target The target value that should be reached.
* \param changed Output value which is set to 1 if cur was changed.
*/
void fade_colour(float *cur, const float *target, int *changed)
void fade_colour(struct fader_ctx *ctx, float *cur, const float *target, uint8_t *changed)
{
float diff;
if(*cur > *target) {
diff = *cur - *target;
if(diff < fadestep) {
if(diff < ctx->fadestep) {
*cur = *target;
} else {
*cur -= fadestep;
*cur -= ctx->fadestep;
}
*changed = 1;
} else if(*cur < *target) {
diff = *target - *cur;
if(diff < fadestep) {
if(diff < ctx->fadestep) {
*cur = *target;
} else {
*cur += fadestep;
*cur += ctx->fadestep;
}
*changed = 1;
}
}
void fader_update(void)
void fader_update(struct fader_ctx *ctx)
{
for(uint32_t i = 0; i < numModules; i++) {
fade_colour(&(curColour[i].red), &(targetColour[i].red), &somethingChanged);
fade_colour(&(curColour[i].green), &(targetColour[i].green), &somethingChanged);
fade_colour(&(curColour[i].blue), &(targetColour[i].blue), &somethingChanged);
fade_colour(&(curColour[i].white), &(targetColour[i].white), &somethingChanged);
for(uint32_t i = 0; i < ctx->num_modules; i++) {
fade_colour(ctx, &(ctx->cur_colour[i].red), &(ctx->target_colour[i].red), &ctx->something_changed);
fade_colour(ctx, &(ctx->cur_colour[i].green), &(ctx->target_colour[i].green), &ctx->something_changed);
fade_colour(ctx, &(ctx->cur_colour[i].blue), &(ctx->target_colour[i].blue), &ctx->something_changed);
fade_colour(ctx, &(ctx->cur_colour[i].white), &(ctx->target_colour[i].white), &ctx->something_changed);
sk6812_set_colour(ledCtx, i,
(uint8_t)curColour[i].red,
(uint8_t)curColour[i].green,
(uint8_t)curColour[i].blue,
(uint8_t)curColour[i].white);
sk6812_set_colour(ctx->led_ctx, i,
(uint8_t)ctx->cur_colour[i].red,
(uint8_t)ctx->cur_colour[i].green,
(uint8_t)ctx->cur_colour[i].blue,
(uint8_t)ctx->cur_colour[i].white);
}
if(somethingChanged) {
sk6812_send_update(ledCtx);
somethingChanged = 0;
if(ctx->something_changed) {
sk6812_send_update(ctx->led_ctx);
ctx->something_changed = 0;
}
}
void fader_wait_frame(void)
{
sleep_until(nextFrame);
nextFrame += interval;
}

View file

@ -5,13 +5,29 @@
struct sk6812_ctx;
int fader_init(uint32_t nMod, struct sk6812_ctx *ctx);
void fader_shutdown(void);
void fader_set_colour(uint32_t module, uint8_t r, uint8_t g, uint8_t b, uint8_t w);
void fader_fade_colour(uint32_t module, uint8_t r, uint8_t g, uint8_t b, uint8_t w);
void fader_add_colour(uint32_t module, uint8_t r, uint8_t g, uint8_t b, uint8_t w);
void fader_set_fadestep(uint8_t newFadestep);
void fader_update(void);
void fader_wait_frame(void);
struct fader_colour {
float red, green, blue, white; // value range is 0.0 to 255.0
};
struct fader_ctx {
uint32_t num_modules;
struct fader_colour *cur_colour;
struct fader_colour *target_colour;
struct sk6812_ctx *led_ctx;
uint8_t something_changed;
float fadestep;
};
int fader_init(struct fader_ctx *ctx, uint32_t nMod, struct sk6812_ctx *ledCtx);
void fader_shutdown(struct fader_ctx *ctx);
void fader_set_colour(struct fader_ctx *ctx, uint32_t module, uint8_t r, uint8_t g, uint8_t b, uint8_t w);
void fader_fade_colour(struct fader_ctx *ctx, uint32_t module, uint8_t r, uint8_t g, uint8_t b, uint8_t w);
void fader_add_colour(struct fader_ctx *ctx, uint32_t module, uint8_t r, uint8_t g, uint8_t b, uint8_t w);
void fader_set_fadestep(struct fader_ctx *ctx, uint8_t newFadestep);
void fader_update(struct fader_ctx *ctx);
#endif // FADER_H

129
src/hat_spi.c Normal file
View file

@ -0,0 +1,129 @@
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <linux/spi/spidev.h>
#include <stdint.h>
#include <errno.h>
#include <string.h>
#include "logger.h"
#include "hat_spi.h"
static const char *spi_dev = "/dev/spidev0.0";
static const uint32_t spi_speed = 12000000; // clock freq in Hz
static const uint16_t spi_delay = 0; // us
static const uint8_t spi_bits = 8; // bits per word
int hat_spi_init(struct hat_spi_ctx *ctx)
{
// Initialize SPI
uint8_t spi_mode = 0;
ctx->spidev_fd = open(spi_dev, O_RDWR);
if(ctx->spidev_fd < 0) {
LOG(LVL_ERR, "hat_spi: cannot open %s: %s", spi_dev, strerror(errno));
return -1;
}
if(ioctl(ctx->spidev_fd, SPI_IOC_WR_MODE, &spi_mode) == -1) {
LOG(LVL_ERR, "hat_spi: cannot change SPI mode: %s", strerror(errno));
return -1;
}
if(ioctl(ctx->spidev_fd, SPI_IOC_WR_BITS_PER_WORD, &spi_bits) == -1) {
LOG(LVL_ERR, "hat_spi: cannot change SPI bits per word: %s", strerror(errno));
return -1;
}
if(ioctl(ctx->spidev_fd, SPI_IOC_WR_MAX_SPEED_HZ, &spi_speed) == -1) {
LOG(LVL_ERR, "hat_spi: cannot change SPI speed: %s", strerror(errno));
return -1;
}
return 0;
}
int hat_spi_set_data(struct hat_spi_ctx *ctx, uint8_t strip, size_t len, uint8_t *data)
{
uint8_t message[4 + len];
message[0] = 0x02; // cmd
message[1] = strip; // buffer index
message[2] = 0x00; // start offset (LSB)
message[3] = 0x00; // start offset (MSB)
memcpy(message + 4, data, len);
struct spi_ioc_transfer tr = {
.tx_buf = (unsigned long)message,
.rx_buf = (unsigned long)NULL,
.len = sizeof(message),
.delay_usecs = spi_delay,
.speed_hz = spi_speed,
.bits_per_word = 8
};
int ret;
if((ret = ioctl(ctx->spidev_fd, SPI_IOC_MESSAGE(1), &tr)) < 0) {
LOG(LVL_ERR, "ws2801: set_data: could not send SPI message: %s", strerror(errno));
}
return ret;
}
int hat_spi_flush(struct hat_spi_ctx *ctx)
{
uint8_t message[1];
message[0] = 0x80; // cmd
struct spi_ioc_transfer tr = {
.tx_buf = (unsigned long)message,
.rx_buf = (unsigned long)NULL,
.len = sizeof(message),
.delay_usecs = spi_delay,
.speed_hz = spi_speed,
.bits_per_word = 8
};
int ret;
if((ret = ioctl(ctx->spidev_fd, SPI_IOC_MESSAGE(1), &tr)) < 0) {
LOG(LVL_ERR, "ws2801: flush: could not send SPI message: %s", strerror(errno));
}
return ret;
}
int hat_spi_config(struct hat_spi_ctx *ctx, uint16_t data_len)
{
uint8_t message[3];
message[0] = 0x01; // cmd
message[1] = data_len & 0xFF; // bytes per strip (LSB)
message[2] = (data_len >> 8) & 0xFF; // bytes per strip (MSB)
struct spi_ioc_transfer tr = {
.tx_buf = (unsigned long)message,
.rx_buf = (unsigned long)NULL,
.len = sizeof(message),
.delay_usecs = spi_delay,
.speed_hz = spi_speed,
.bits_per_word = 8
};
int ret;
if((ret = ioctl(ctx->spidev_fd, SPI_IOC_MESSAGE(1), &tr)) < 0) {
LOG(LVL_ERR, "ws2801: flush: could not send SPI message: %s", strerror(errno));
}
return ret;
}
void hat_spi_shutdown(struct hat_spi_ctx *ctx)
{
close(ctx->spidev_fd);
}

14
src/hat_spi.h Normal file
View file

@ -0,0 +1,14 @@
#ifndef HAT_SPI_H
#define HAT_SPI_H
struct hat_spi_ctx {
int spidev_fd;
};
int hat_spi_init(struct hat_spi_ctx *ctx);
int hat_spi_set_data(struct hat_spi_ctx *ctx, uint8_t strip, size_t len, uint8_t *data);
int hat_spi_flush(struct hat_spi_ctx *ctx);
int hat_spi_config(struct hat_spi_ctx *ctx, uint16_t data_len);
void hat_spi_shutdown(struct hat_spi_ctx *ctx);
#endif // HAT_SPI_H

View file

@ -11,27 +11,35 @@
#include "logger.h"
#include "fader.h"
#include "udpproto.h"
#include "hat_spi.h"
#include "utils.h"
#define PORT 2703
#define NUM_MODULES 60
#define GPIO_IDX 960
#define BASE_ADDR ((void*)0x40000000U)
#define NUM_STRIPS 4
#define INTERVAL 0.01
struct CmdLineArgs {
uint16_t port;
void *base_addr;
uint32_t gpio_idx;
uint32_t num_modules;
uint32_t num_strips;
};
void wait_frame(double *nextFrame, double interval)
{
sleep_until(*nextFrame);
*nextFrame += interval;
}
int parse_args(int argc, char **argv, struct CmdLineArgs *args)
{
int opt;
unsigned long tmp_ul;
unsigned long long tmp_ull;
while((opt = getopt(argc, argv, "p:a:g:n:")) != -1) {
while((opt = getopt(argc, argv, "p:s:n:")) != -1) {
switch(opt) {
case 'p': // port
tmp_ul = strtoul(optarg, NULL, 0);
@ -43,18 +51,12 @@ int parse_args(int argc, char **argv, struct CmdLineArgs *args)
args->port = (uint16_t)tmp_ul;
break;
case 'a': // base address
tmp_ull = strtoull(optarg, NULL, 0);
args->base_addr = (void*)tmp_ull;
break;
case 'g': // gpio
args->gpio_idx = strtoul(optarg, NULL, 0);
break;
case 'n': // number of modules
args->num_modules = strtoul(optarg, NULL, 0);
break;
case 's': // number of modules
args->num_strips = strtoul(optarg, NULL, 0);
break;
default:
return -1;
@ -66,41 +68,60 @@ int parse_args(int argc, char **argv, struct CmdLineArgs *args)
int main(int argc, char **argv)
{
struct sk6812_ctx ctx;
struct hat_spi_ctx hat_ctx;
struct CmdLineArgs args;
double nextFrame = get_hires_time() + INTERVAL;
// initialize logger
logger_init();
// default arguments
args.port = PORT;
args.base_addr = BASE_ADDR;
args.gpio_idx = GPIO_IDX;
args.num_modules = NUM_MODULES;
args.num_strips = NUM_STRIPS;
// parse command line arguments
if(parse_args(argc, argv, &args) == -1) {
LOG(LVL_FATAL, "Error while parsing command line arguments!\n\n"
"Usage: %s [-p port] [-a base_address] [-g gpio_index] [-n number_of_modules]\n\n", argv[0]);
"Usage: %s [-p port] [-s number_of_strips] [-n number_of_modules]\n\n", argv[0]);
return 1;
}
// initialise the UDP server
if(udpproto_init(PORT) == -1) {
LOG(LVL_FATAL, "Could not initialize the UDP server.");
struct fader_ctx fader_ctx[args.num_strips];
struct sk6812_ctx ctx[args.num_strips];
// initialize SPI interface for hat
if(hat_spi_init(&hat_ctx) == -1) {
LOG(LVL_FATAL, "Could not initialize SPI interface.");
return 1;
}
// initialize ws2801 library
if(sk6812_init(&ctx, GPIO_IDX, BASE_ADDR, NUM_MODULES) == -1) {
LOG(LVL_FATAL, "Could not initialize SK6812 library.");
if(hat_spi_config(&hat_ctx, args.num_modules*4) == -1) {
LOG(LVL_FATAL, "Could not configure LED driver hat.");
return 1;
}
// initialize sk6812 library
for(int i = 0; i < args.num_strips; i++) {
if(sk6812_init(&(ctx[i]), &hat_ctx, i, args.num_modules) == -1) {
LOG(LVL_FATAL, "Could not initialize SK6812 library.");
return 1;
}
}
// initialise the LED fader
if(fader_init(NUM_MODULES, &ctx) == -1) {
LOG(LVL_FATAL, "Could not initialize the LED fader.");
for(int i = 0; i < args.num_strips; i++) {
if(fader_init(&(fader_ctx[i]), args.num_modules, &(ctx[i])) == -1) {
LOG(LVL_FATAL, "Could not initialize the LED fader.");
return 1;
}
}
// initialise the UDP server
if(udpproto_init(PORT, fader_ctx, args.num_strips) == -1) {
LOG(LVL_FATAL, "Could not initialize the UDP server.");
return 1;
}
@ -108,14 +129,19 @@ int main(int argc, char **argv)
while(1) {
udpproto_process();
fader_update();
fader_wait_frame();
for(int i = 0; i < args.num_strips; i++) {
fader_update(&(fader_ctx[i]));
}
hat_spi_flush(&hat_ctx);
wait_frame(&nextFrame, INTERVAL);
}
// shut down all modules
fader_shutdown();
sk6812_shutdown(&ctx);
udpproto_shutdown();
for(int i = 0; i < args.num_strips; i++) {
fader_shutdown(&(fader_ctx[i]));
sk6812_shutdown(&(ctx[i]));
}
return 0;
}

View file

@ -1,124 +1,42 @@
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/mman.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include "logger.h"
#include "hat_spi.h"
#include "sk6812.h"
int sk6812_init(struct sk6812_ctx *ctx, uint32_t gpio_idx, void *phys_baseptr, uint32_t num_modules)
int sk6812_init(struct sk6812_ctx *ctx, struct hat_spi_ctx *hat_ctx, uint8_t strip_id, uint32_t num_modules)
{
ctx->gpio_idx = gpio_idx;
ctx->hat_ctx = hat_ctx;
ctx->num_modules = num_modules;
ctx->strip_id = strip_id;
/*
* Setup memory map for LED memory.
*/
size_t mapsize = num_modules*sizeof(uint32_t);
size_t pagesize = (size_t)getpagesize();
if((mapsize % pagesize) != 0) {
mapsize = pagesize * (mapsize / pagesize + 1);
}
ctx->devmem_fd = open("/dev/mem", O_RDWR|O_SYNC);
if(ctx->devmem_fd == -1) {
LOG(LVL_ERR, "sk6812: open(/dev/mem) failed: %s.", strerror(errno));
ctx->pixeldata = malloc(4*num_modules * sizeof(ctx->pixeldata[0]));
if(!ctx->pixeldata) {
LOG(LVL_ERR, "sk6812: malloc for pixeldata failed.");
return -1;
}
ctx->memptr = (struct sk6812_memory*)mmap(0, mapsize, PROT_READ|PROT_WRITE, MAP_SHARED, ctx->devmem_fd, (off_t)phys_baseptr);
if(ctx->memptr == MAP_FAILED) {
LOG(LVL_ERR, "sk6812: mmap(0x%08X) failed: %s.", phys_baseptr, strerror(errno));
close(ctx->devmem_fd);
return -1;
}
ctx->mapped_size = mapsize;
// write number of modules to mapped memory
ctx->memptr->num_leds = num_modules;
/*
* set up GPIO
*/
char filename[256];
char data[32];
int dlen;
int fd = open("/sys/class/gpio/export", O_WRONLY);
if(ctx->devmem_fd == -1) {
LOG(LVL_ERR, "sk6812: open(/sys/class/gpio/export, WRONLY) failed: %s.", strerror(errno));
return -1;
}
dlen = snprintf(data, 32, "%d\n", ctx->gpio_idx);
write(fd, data, dlen);
close(fd);
snprintf(filename, 256, "/sys/class/gpio/gpio%u/direction", ctx->gpio_idx);
fd = open(filename, O_WRONLY);
if(ctx->devmem_fd == -1) {
LOG(LVL_ERR, "sk6812: open(%s, WRONLY) failed: %s.", filename, strerror(errno));
return -1;
}
write(fd, "out\n", 4);
close(fd);
return 0;
}
void sk6812_shutdown(struct sk6812_ctx *ctx)
{
munmap(ctx->memptr, ctx->mapped_size);
close(ctx->devmem_fd);
free(ctx->pixeldata);
}
void sk6812_set_colour(struct sk6812_ctx *ctx, uint32_t module, uint8_t red, uint8_t green, uint8_t blue, uint8_t white)
{
// despite the info in the datasheet, red and green are swapped :/
uint32_t value =
((uint32_t)green << 24U) |
((uint32_t)red << 16U) |
((uint32_t)blue << 8U) |
(uint32_t)white;
ctx->memptr->led_data[module] = value;
ctx->pixeldata[4*module + 0] = green;
ctx->pixeldata[4*module + 1] = red;
ctx->pixeldata[4*module + 2] = blue;
ctx->pixeldata[4*module + 3] = white;
}
int sk6812_send_update(struct sk6812_ctx *ctx)
{
LOG(LVL_DEBUG, "Updating with LED count: %u", ctx->memptr->num_leds);
char filename[256];
snprintf(filename, 256, "/sys/class/gpio/gpio%u/value", ctx->gpio_idx);
int fd = open(filename, O_WRONLY);
if(ctx->devmem_fd == -1) {
LOG(LVL_ERR, "sk6812: open(%s, WRONLY) failed: %s.", filename, strerror(errno));
return -1;
}
write(fd, "0\n", 2);
close(fd);
fd = open(filename, O_WRONLY);
if(ctx->devmem_fd == -1) {
LOG(LVL_ERR, "sk6812: open(%s, WRONLY) failed: %s.", filename, strerror(errno));
return -1;
}
write(fd, "1\n", 2);
close(fd);
return 0;
return hat_spi_set_data(ctx->hat_ctx, ctx->strip_id, ctx->num_modules*4, ctx->pixeldata);
}

View file

@ -3,6 +3,8 @@
#include <stdint.h>
struct hat_spi_ctx;
struct sk6812_memory
{
uint32_t num_leds;
@ -11,14 +13,14 @@ struct sk6812_memory
struct sk6812_ctx
{
struct sk6812_memory *memptr;
char *gpio_value_path;
int devmem_fd;
size_t mapped_size;
uint32_t gpio_idx;
uint8_t *pixeldata;
uint32_t num_modules;
uint8_t strip_id;
struct hat_spi_ctx *hat_ctx;
};
int sk6812_init(struct sk6812_ctx *ctx, uint32_t gpio_idx, void *phys_baseptr, uint32_t num_modules);
int sk6812_init(struct sk6812_ctx *ctx, struct hat_spi_ctx *hat_ctx, uint8_t strip_id, uint32_t num_modules);
void sk6812_shutdown(struct sk6812_ctx *ctx);
void sk6812_set_colour(struct sk6812_ctx *ctx, uint32_t module, uint8_t red, uint8_t green, uint8_t blue, uint8_t white);
int sk6812_send_update(struct sk6812_ctx *ctx);

View file

@ -17,14 +17,19 @@
#define ADD_COLOUR 2
#define SET_FADESTEP 3
#define BYTES_PER_PACKET 7
#define BYTES_PER_PACKET 8
int sock;
struct fader_ctx *udpproto_faders;
uint32_t udpproto_nstrips;
int udpproto_init(uint16_t port)
int udpproto_init(uint16_t port, struct fader_ctx *faders, uint32_t nstrips)
{
struct sockaddr_in listen_addr;
udpproto_nstrips = nstrips;
udpproto_faders = faders;
// initialize UDP server socket
sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP);
if(sock == -1) {
@ -52,10 +57,12 @@ int udpproto_process(void)
uint8_t pkgbuf[65536];
ssize_t rcvbytes, offset = 0;
uint8_t r, g, b, w, action;
uint8_t r, g, b, w, action, strip;
uint16_t module;
int fds_ready;
struct fader_ctx *fader;
// check if there is data to be read (to prevent blocking)
struct pollfd pfd = {
.fd = sock,
@ -86,29 +93,36 @@ int udpproto_process(void)
offset = 0;
while(offset <= rcvbytes - BYTES_PER_PACKET) {
action = pkgbuf[offset + 0];
module = (uint16_t)pkgbuf[offset + 1] << 8;
module |= pkgbuf[offset + 2];
r = pkgbuf[offset + 3];
g = pkgbuf[offset + 4];
b = pkgbuf[offset + 5];
w = pkgbuf[offset + 6];
strip = pkgbuf[offset + 1];
module = (uint16_t)pkgbuf[offset + 2] << 8;
module |= pkgbuf[offset + 3];
r = pkgbuf[offset + 4];
g = pkgbuf[offset + 5];
b = pkgbuf[offset + 6];
w = pkgbuf[offset + 7];
offset += BYTES_PER_PACKET;
if(strip > udpproto_nstrips) {
continue;
}
fader = udpproto_faders + strip;
switch(action) {
case SET_COLOUR:
fader_set_colour(module, r, g, b, w);
fader_set_colour(fader, module, r, g, b, w);
break;
case FADE_COLOUR:
fader_fade_colour(module, r, g, b, w);
fader_fade_colour(fader, module, r, g, b, w);
break;
case ADD_COLOUR:
fader_add_colour(module, r, g, b, w);
fader_add_colour(fader, module, r, g, b, w);
break;
case SET_FADESTEP:
fader_set_fadestep(r); // red channel contains the fadestep in this case
fader_set_fadestep(fader, r); // red channel contains the fadestep in this case
break;
default:

View file

@ -3,7 +3,9 @@
#include <stdint.h>
int udpproto_init(uint16_t port);
struct fader_ctx;
int udpproto_init(uint16_t port, struct fader_ctx *faders, uint32_t nstrips);
int udpproto_process(void);
void udpproto_shutdown(void);