#!/usr/bin/env python3 import sys import svgwrite import numpy as np import matplotlib.pyplot as pp from matplotlib.colors import hsv_to_rgb import json import random import argparse REF_LATITUDE = 49.58666 REF_LONGITUDE = 11.01250 # REF_LATITUDE = -30 # REF_LONGITUDE = 90 def map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon, R=1): """ Azimuthal equidistant projection. This function takes a point to map in latitude/longitude format as well as a reference point which becomes the "center" of the map. It then projects the point into the 2D plane such that the distance from the center is proportional to the distance on the Great Circle through the projected and the reference point. The angle represents the azimuthal direction of the projected point. Args: lat(numpy.array): Latitudes of the point to project. lon(numpy.array): Longitudes of the point to project. ref_lat(float): Latitude of the reference point. ref_lon(float): Longitude of the reference point. R(float): Radius (scale) of the map. Returns: x(numpy.array): The calculated x coordinates. y(numpy.array): The calculated y coordinates. """ dlon = lon - ref_lon rho_linear_norm = np.arccos(np.sin(ref_lat) * np.sin(lat) + np.cos(ref_lat) * np.cos(lat) * np.cos(dlon)) / np.pi rho = R * rho_linear_norm theta = np.arctan2(np.cos(lat) * np.sin(dlon), (np.cos(ref_lat) * np.sin(lat) - np.sin(ref_lat) * np.cos(lat) * np.cos(dlon))) x = rho * np.sin(theta) y = -rho * np.cos(theta) return x, y def random_country_color(): h = random.random() s = 0.7 v = 0.8 r, g, b = [int(255.99*x) for x in hsv_to_rgb([h, s, v])] return f"#{r:02x}{g:02x}{b:02x}" def is_point_in_polygon(point, polygon): # Idea: draw an infinite line from the test point along the x axis to the # right. Then check how many polygon edges this line intersects. If the # number is even, the point is outside the polygon. edges = [] # list of lists, containing two points each for i in range(len(polygon)-1): edges.append([polygon[i], polygon[i+1]]) # the closing edge edges.append([polygon[-1], polygon[0]]) num_intersects = 0 test_x, test_y = point for edge in edges: start_x = edge[0][0] start_y = edge[0][1] end_x = edge[1][0] end_y = edge[1][1] # quick exclusion tests if start_x < test_x and end_x < test_x: continue # edge is completely left of the test point if start_y < test_y and end_y < test_y: continue # edge is completely below the test point if start_y > test_y and end_y > test_y: continue # edge is completely above the test point # calculate the x coordinate where the edge intersects the whole # horizontal line intersect_x = start_x + (end_x - start_x) \ * (test_y - start_y) \ / (end_y - start_y) if intersect_x > test_x: # we found an intersection! num_intersects += 1 if num_intersects % 2 == 0: return False # even number of intersects -> outside polygon else: return True # odd number of intersects -> inside polygon def svg_make_inverse_country_path(doc, map_radius, polygon, **kwargs): # build a closed circle path covering the whole map commands = [f"M 0, {map_radius}", f"a {map_radius},{map_radius} 0 1,0 {map_radius*2},0", f"a {map_radius},{map_radius} 0 1,0 {-map_radius*2},0", "z"] # "subtract" the country polygon commands.append(f"M {polygon[0][0]} {polygon[0][1]}") # add lines for each polygon point for point in polygon[1:]: commands.append(f"L {point[0]} {point[1]}") # ensure straight closing line commands.append(f"L {polygon[0][0]} {polygon[0][1]}") # close the inner path commands.append("z") return doc.path(commands, **kwargs) def render(ref_lat, ref_lon, output_stream): random.seed(0) """ Test code test_lat = [np.pi/2, np.pi/4, 0, -np.pi/4, -np.pi/2] test_lon = np.arange(-np.pi, np.pi, np.pi/4) for lat in test_lat: for lon in test_lon: x, y = map_azimuthal_equidistant(np.array([lat]), np.array([lon]), np.pi/2, 0) print(f"{lat*180/np.pi:6.3f}, {lon*180/np.pi:6.3f} => {x[0]:6.3f}, {y[0]:6.3f}", file=sys.stderr) """ print("Loading Geodata…", file=sys.stderr) with open('geo-countries/data/countries.geojson', 'r') as jfile: geojson = json.load(jfile) print("Finding boundaries…", file=sys.stderr) # key: 3-letter country identifier # data: {full_name, numpy.array(coordinates), numpy.array(proj_coordinates)}. # coordinates is a list of 2xN arrays, where N is the number of points. Row 0 # contains the longitude, Row 1 the latitude. # proj_coordinates is a list of 2xN arrays, where N is the number of points. # Row 0 contains the projected x, Row 1 the projected y. simplegeodata = {} features = geojson['features'] for feature in features: name = feature['properties']['ADMIN'] key = feature['properties']['ISO_A2'] # handle duplicate keys (can happen for small countries) if key in simplegeodata.keys(): key = name print(f"Preparing {key} ({name})…", file=sys.stderr) multipoly = feature['geometry']['coordinates'] conv_polys = [] for poly in multipoly: for subpoly in poly: coords_list = [] # list of lists assert(len(subpoly[0]) == 2) coords_list += subpoly # convert coordinates to numpy array and radians coords = np.array(coords_list).T * np.pi / 180 conv_polys.append(coords) simplegeodata[key] = {"name": name, "coordinates": conv_polys} ref_lat = ref_lat * np.pi / 180 ref_lon = ref_lon * np.pi / 180 antipodal_lat = -ref_lat antipodal_lon = ref_lon + np.pi if antipodal_lon > np.pi: antipodal_lon -= 2*np.pi R = 500 """ # Override data with test coordinate system coords = [] N = 128 # constant-latitude circles coords.append(np.array([np.linspace(-np.pi, np.pi, N), np.ones(N) * np.pi/4])) coords.append(np.array([np.linspace(-np.pi, np.pi, N), np.ones(N) * 0])) coords.append(np.array([np.linspace(-np.pi, np.pi, N), np.ones(N) * -np.pi/4])) # constant-longitude half-circles coords.append(np.array([np.ones(N) * -4*np.pi/4, np.linspace(-np.pi/2, np.pi/2, N)])) coords.append(np.array([np.ones(N) * -3*np.pi/4, np.linspace(-np.pi/2, np.pi/2, N)])) coords.append(np.array([np.ones(N) * -2*np.pi/4, np.linspace(-np.pi/2, np.pi/2, N)])) coords.append(np.array([np.ones(N) * -1*np.pi/4, np.linspace(-np.pi/2, np.pi/2, N)])) coords.append(np.array([np.ones(N) * 0*np.pi/4, np.linspace(-np.pi/2, np.pi/2, N)])) coords.append(np.array([np.ones(N) * 1*np.pi/4, np.linspace(-np.pi/2, np.pi/2, N)])) coords.append(np.array([np.ones(N) * 2*np.pi/4, np.linspace(-np.pi/2, np.pi/2, N)])) coords.append(np.array([np.ones(N) * 3*np.pi/4, np.linspace(-np.pi/2, np.pi/2, N)])) simplegeodata = {"XY": {'name': 'test', 'coordinates': coords}} """ # apply azimuthal equidistant projection for k, v in simplegeodata.items(): proj_polys = [] for poly in v['coordinates']: lat = poly[1, :] lon = poly[0, :] x, y = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon, R) coords = np.array([x, y]) # remove any points that contain a NaN coordinate coords = coords[:, np.any(np.invert(np.isnan(coords)), axis=0)] proj_polys.append(coords) v['proj_coordinates'] = proj_polys # generate the SVG doc = svgwrite.Drawing("/tmp/test.svg", size=(2*R, 2*R)) doc.defs.add(doc.style(""" .country { stroke: black; stroke-width: 0.01px; } .dist_circle_label, .azimuth_line_label { font-size: 3px; font: sans-serif; text-anchor: middle; } .dist_circle, .azimuth_line { fill: none; stroke: black; stroke-width: 0.1px; } .maidenhead_line { fill: none; stroke: red; stroke-width: 0.1px; opacity: 0.5; } """)) doc.add(doc.circle(center=(R, R), r=R, fill='#ddeeff', stroke_width=1, stroke='black')) for k, v in simplegeodata.items(): print(f"Exporting {k}…", file=sys.stderr) color = random_country_color() group = doc.g() for i in range(len(v['proj_coordinates'])): poly = v['proj_coordinates'][i] points = poly.T + R # shift to the center of the drawing # check if the antipodal point is inside this polygon. If so, it # needs to be "inverted", i.e. subtracted from the surrounding map # circle. if is_point_in_polygon((antipodal_lon, antipodal_lat), v['coordinates'][i].T): print("!!! Found polygon containing the antipodal point!") obj = svg_make_inverse_country_path(doc, R, np.flipud(points), **{ 'class': 'country', 'fill': color}) else: obj = doc.polygon(points, **{ 'class': 'country', 'fill': color}) group.add(obj) group.set_desc(title=v['name']) doc.add(group) # generate equidistant circles d_max = 40075/2 for distance in [500, 1000, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000]: r = R * distance / d_max doc.add(doc.circle(center=(R, R), r=r, **{'class': 'dist_circle'})) doc.add(doc.text(f"{distance} km", (R, R-r+5), **{'class': 'dist_circle_label'})) # generate azimuth lines in 30° steps for azimuth in np.arange(0, np.pi, np.pi/6): start_x = R + R * np.cos(azimuth-np.pi/2) start_y = R + R * np.sin(azimuth-np.pi/2) end_x = R - R * np.cos(azimuth-np.pi/2) end_y = R - R * np.sin(azimuth-np.pi/2) doc.add(doc.line((start_x, start_y), (end_x, end_y), **{'class': 'azimuth_line'})) azimuth_deg = int(np.round(azimuth * 180 / np.pi)) textpos = (2*R - 10, R - 2) txt = doc.text(f"{azimuth_deg:d} °", textpos, **{'class': 'azimuth_line_label'}) txt.rotate(azimuth_deg - 90, center=(R, R)) doc.add(txt) txt = doc.text(f"{azimuth_deg+180:d} °", textpos, **{'class': 'azimuth_line_label'}) txt.rotate(azimuth_deg - 90 + 180, center=(R, R)) doc.add(txt) # generate Maidenhead locator grid (first two letters only) group = doc.g() N = 18 # subdivisions of Earth resolution = 4096 for x in range(0, N): lon = x * 2 * np.pi / N lat = np.linspace(-np.pi/2, np.pi/2, resolution) x, y = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon, R) points = np.array([x, y]).T + R group.add(doc.polyline(points, **{'class': 'maidenhead_line'})) for y in range(0, N): lon = np.linspace(-np.pi, np.pi, resolution) lat = y * np.pi / N - np.pi/2 x, y = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon, R) points = np.array([x, y]).T + R group.add(doc.polyline(points, **{'class': 'maidenhead_line'})) doc.add(group) """ for x in range(0, 26): for y in range(0, 26): sectorname = chr(ord('A')+x) + chr(ord('A')+y) """ print(f"Writing output…", file=sys.stderr) doc.write(output_stream, pretty=True) return # Debug Plot for k, v in simplegeodata.items(): for poly in v['proj_coordinates']: pp.plot(poly[0, :], poly[1, :]) pp.plot([-1, 1], [0, 0], 'k', linewidth=0.5) pp.plot([0, 0], [-1, 1], 'k', linewidth=0.5) t = np.linspace(-np.pi, np.pi, 256) ct, st = np.cos(t), np.sin(t) pp.plot(ct, st, 'k', linewidth=0.5) U = 40075 for distance in np.arange(0, U/2, 2000): f = distance / (U/2) pp.plot(f*ct, f*st, 'k', linewidth=0.2) pp.axis('equal') pp.show() if __name__ == "__main__": parser = argparse.ArgumentParser( description="Render an azimuthal equidistant map of the world " + "centered on the given point") parser.add_argument(metavar='ref-lat', type=float, dest='ref_lat', help='Reference Latitude') parser.add_argument(metavar='ref-lon', type=float, dest='ref_lon', help='Reference Longitude') parser.add_argument('-o', '--output-file', type=argparse.FileType('w'), help='The output SVG file (default: print to stdout)', default=sys.stdout) args = parser.parse_args() render(args.ref_lat, args.ref_lon, args.output_file)