Refactoring: move processing steps to separate functions
This commit is contained in:
parent
67caf16b14
commit
60f59379e5
322
qsomap.py
322
qsomap.py
|
@ -137,16 +137,7 @@ def svg_make_inverse_country_path(doc, map_radius, polygon, **kwargs):
|
|||
return doc.path(commands, **kwargs)
|
||||
|
||||
|
||||
def render(ref_lat, ref_lon, output_stream):
|
||||
random.seed(0)
|
||||
|
||||
print("Loading Geodata…", file=sys.stderr)
|
||||
|
||||
with open('geo-countries/data/countries.geojson', 'r') as jfile:
|
||||
geojson = json.load(jfile)
|
||||
|
||||
print("Finding boundaries…", file=sys.stderr)
|
||||
|
||||
def simplify_geojson(geojson):
|
||||
# key: 3-letter country identifier
|
||||
# data: {full_name,
|
||||
# numpy.array(coordinates),
|
||||
|
@ -187,15 +178,178 @@ def render(ref_lat, ref_lon, output_stream):
|
|||
|
||||
simplegeodata[key] = {"name": name, "coordinates": conv_polys}
|
||||
|
||||
ref_lat = ref_lat * np.pi / 180
|
||||
ref_lon = ref_lon * np.pi / 180
|
||||
return simplegeodata
|
||||
|
||||
|
||||
def map_all_polygons(simplegeodata, ref_lat, ref_lon, map_radius):
|
||||
# apply azimuthal equidistant projection
|
||||
for k, v in simplegeodata.items():
|
||||
proj_polys = []
|
||||
|
||||
for poly in v['coordinates']:
|
||||
lat = poly[1, :]
|
||||
lon = poly[0, :]
|
||||
|
||||
x, y = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon,
|
||||
map_radius)
|
||||
|
||||
coords = np.array([x, y])
|
||||
|
||||
# remove any points that contain a NaN coordinate
|
||||
coords = coords[:, np.any(np.invert(np.isnan(coords)), axis=0)]
|
||||
|
||||
proj_polys.append(coords)
|
||||
|
||||
v['proj_coordinates'] = proj_polys
|
||||
|
||||
|
||||
def svg_add_countries(doc, simplegeodata, ref_lat, ref_lon, map_radius):
|
||||
antipodal_lat = -ref_lat
|
||||
antipodal_lon = ref_lon + np.pi
|
||||
|
||||
if antipodal_lon > np.pi:
|
||||
antipodal_lon -= 2*np.pi
|
||||
|
||||
for k, v in simplegeodata.items():
|
||||
print(f"Exporting {k}…", file=sys.stderr)
|
||||
|
||||
color = random_country_color()
|
||||
|
||||
group = doc.g()
|
||||
|
||||
for i in range(len(v['proj_coordinates'])):
|
||||
poly = v['proj_coordinates'][i]
|
||||
points = poly.T + map_radius # shift to the center of the drawing
|
||||
|
||||
# check if the antipodal point is inside this polygon. If so, it
|
||||
# needs to be "inverted", i.e. subtracted from the surrounding map
|
||||
# circle.
|
||||
|
||||
if is_point_in_polygon((antipodal_lon, antipodal_lat),
|
||||
v['coordinates'][i].T):
|
||||
print("!!! Found polygon containing the antipodal point!",
|
||||
file=sys.stderr)
|
||||
obj = svg_make_inverse_country_path(doc, map_radius,
|
||||
np.flipud(points),
|
||||
**{'class': 'country',
|
||||
'fill': color})
|
||||
else:
|
||||
obj = doc.polygon(points, **{
|
||||
'class': 'country',
|
||||
'fill': color})
|
||||
|
||||
group.add(obj)
|
||||
|
||||
group.set_desc(title=v['name'])
|
||||
doc.add(group)
|
||||
|
||||
|
||||
def svg_add_maidenhead_grid(doc, ref_lat, ref_lon, map_radius):
|
||||
# generate Maidenhead locator grid (first two letters only)
|
||||
|
||||
group = doc.g()
|
||||
|
||||
N = 18 # subdivisions of Earth
|
||||
resolution = 4096
|
||||
|
||||
for x in range(0, N):
|
||||
lon = x * 2 * np.pi / N
|
||||
lat = np.linspace(-np.pi/2, np.pi/2, resolution)
|
||||
|
||||
x, y = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon, map_radius)
|
||||
points = np.array([x, y]).T + map_radius
|
||||
|
||||
group.add(doc.polyline(points, **{'class': 'maidenhead_line'}))
|
||||
|
||||
for y in range(0, N):
|
||||
lon = np.linspace(-np.pi, np.pi, resolution)
|
||||
lat = y * np.pi / N - np.pi/2
|
||||
|
||||
x, y = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon,
|
||||
map_radius)
|
||||
points = np.array([x, y]).T + map_radius
|
||||
|
||||
group.add(doc.polyline(points, **{'class': 'maidenhead_line'}))
|
||||
|
||||
for x in range(0, N):
|
||||
for y in range(0, N):
|
||||
sectorname = chr(ord('A') + (x + N//2) % N) \
|
||||
+ chr(ord('A') + y)
|
||||
|
||||
lon = (x + 0.5) * 2 * np.pi / N
|
||||
lat = (y + 0.5) * np.pi / N - np.pi/2
|
||||
|
||||
tx, ty = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon,
|
||||
map_radius)
|
||||
|
||||
font_size = 10
|
||||
if y == 0 or y == N-1:
|
||||
font_size = 3
|
||||
|
||||
group.add(doc.text(sectorname, (tx + map_radius, ty + map_radius),
|
||||
**{'class': 'maidenhead_label',
|
||||
'font-size': font_size}))
|
||||
|
||||
doc.add(group) # Maidenhead grid
|
||||
|
||||
|
||||
def svg_add_distance_azimuth_lines(doc, ref_lat, ref_lon, map_radius):
|
||||
group = doc.g()
|
||||
|
||||
# generate equidistant circles
|
||||
|
||||
d_max = 40075/2
|
||||
for distance in [500, 1000, 2000, 3000, 4000, 5000, 6000, 8000, 10000,
|
||||
12000, 14000, 16000, 18000, 20000]:
|
||||
r = map_radius * distance / d_max
|
||||
group.add(doc.circle(center=(map_radius, map_radius), r=r,
|
||||
**{'class': 'dist_circle'}))
|
||||
|
||||
group.add(doc.text(f"{distance} km", (map_radius, map_radius-r+5),
|
||||
**{'class': 'dist_circle_label'}))
|
||||
|
||||
# generate azimuth lines in 30° steps
|
||||
|
||||
for azimuth in np.arange(0, np.pi, np.pi/6):
|
||||
start_x = map_radius + map_radius * np.cos(azimuth-np.pi/2)
|
||||
start_y = map_radius + map_radius * np.sin(azimuth-np.pi/2)
|
||||
end_x = map_radius - map_radius * np.cos(azimuth-np.pi/2)
|
||||
end_y = map_radius - map_radius * np.sin(azimuth-np.pi/2)
|
||||
|
||||
group.add(doc.line((start_x, start_y), (end_x, end_y),
|
||||
**{'class': 'azimuth_line'}))
|
||||
|
||||
azimuth_deg = int(np.round(azimuth * 180 / np.pi))
|
||||
textpos = (2*map_radius - 10, map_radius - 2)
|
||||
|
||||
txt = doc.text(f"{azimuth_deg:d} °", textpos,
|
||||
**{'class': 'azimuth_line_label'})
|
||||
txt.rotate(azimuth_deg - 90, center=(map_radius, map_radius))
|
||||
group.add(txt)
|
||||
|
||||
txt = doc.text(f"{azimuth_deg+180:d} °", textpos,
|
||||
**{'class': 'azimuth_line_label'})
|
||||
txt.rotate(azimuth_deg - 90 + 180, center=(map_radius, map_radius))
|
||||
group.add(txt)
|
||||
|
||||
doc.add(group) # Circles, azimuth lines and labels
|
||||
|
||||
|
||||
def render(ref_lat, ref_lon, output_stream):
|
||||
random.seed(0)
|
||||
|
||||
print("Loading Geodata…", file=sys.stderr)
|
||||
|
||||
with open('geo-countries/data/countries.geojson', 'r') as jfile:
|
||||
geojson = json.load(jfile)
|
||||
|
||||
print("Finding boundaries…", file=sys.stderr)
|
||||
|
||||
simplegeodata = simplify_geojson(geojson)
|
||||
|
||||
ref_lat = ref_lat * np.pi / 180
|
||||
ref_lon = ref_lon * np.pi / 180
|
||||
|
||||
R = 500
|
||||
|
||||
"""
|
||||
|
@ -233,24 +387,7 @@ def render(ref_lat, ref_lon, output_stream):
|
|||
simplegeodata = {"XY": {'name': 'test', 'coordinates': coords}}
|
||||
"""
|
||||
|
||||
# apply azimuthal equidistant projection
|
||||
for k, v in simplegeodata.items():
|
||||
proj_polys = []
|
||||
|
||||
for poly in v['coordinates']:
|
||||
lat = poly[1, :]
|
||||
lon = poly[0, :]
|
||||
|
||||
x, y = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon, R)
|
||||
|
||||
coords = np.array([x, y])
|
||||
|
||||
# remove any points that contain a NaN coordinate
|
||||
coords = coords[:, np.any(np.invert(np.isnan(coords)), axis=0)]
|
||||
|
||||
proj_polys.append(coords)
|
||||
|
||||
v['proj_coordinates'] = proj_polys
|
||||
map_all_polygons(simplegeodata, ref_lat, ref_lon, R)
|
||||
|
||||
# generate the SVG
|
||||
|
||||
|
@ -294,128 +431,9 @@ def render(ref_lat, ref_lon, output_stream):
|
|||
doc.add(doc.circle(center=(R, R), r=R, fill='#ddeeff',
|
||||
stroke_width=1, stroke='black'))
|
||||
|
||||
for k, v in simplegeodata.items():
|
||||
print(f"Exporting {k}…", file=sys.stderr)
|
||||
|
||||
color = random_country_color()
|
||||
|
||||
group = doc.g()
|
||||
|
||||
for i in range(len(v['proj_coordinates'])):
|
||||
poly = v['proj_coordinates'][i]
|
||||
points = poly.T + R # shift to the center of the drawing
|
||||
|
||||
# check if the antipodal point is inside this polygon. If so, it
|
||||
# needs to be "inverted", i.e. subtracted from the surrounding map
|
||||
# circle.
|
||||
|
||||
if is_point_in_polygon((antipodal_lon, antipodal_lat),
|
||||
v['coordinates'][i].T):
|
||||
print("!!! Found polygon containing the antipodal point!",
|
||||
file=sys.stderr)
|
||||
obj = svg_make_inverse_country_path(doc, R, np.flipud(points),
|
||||
**{'class': 'country',
|
||||
'fill': color})
|
||||
else:
|
||||
obj = doc.polygon(points, **{
|
||||
'class': 'country',
|
||||
'fill': color})
|
||||
|
||||
group.add(obj)
|
||||
|
||||
group.set_desc(title=v['name'])
|
||||
doc.add(group)
|
||||
|
||||
# generate Maidenhead locator grid (first two letters only)
|
||||
|
||||
group = doc.g()
|
||||
|
||||
N = 18 # subdivisions of Earth
|
||||
resolution = 4096
|
||||
|
||||
for x in range(0, N):
|
||||
lon = x * 2 * np.pi / N
|
||||
lat = np.linspace(-np.pi/2, np.pi/2, resolution)
|
||||
|
||||
x, y = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon, R)
|
||||
points = np.array([x, y]).T + R
|
||||
|
||||
group.add(doc.polyline(points, **{'class': 'maidenhead_line'}))
|
||||
|
||||
for y in range(0, N):
|
||||
lon = np.linspace(-np.pi, np.pi, resolution)
|
||||
lat = y * np.pi / N - np.pi/2
|
||||
|
||||
x, y = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon, R)
|
||||
points = np.array([x, y]).T + R
|
||||
|
||||
group.add(doc.polyline(points, **{'class': 'maidenhead_line'}))
|
||||
|
||||
for x in range(0, N):
|
||||
for y in range(0, N):
|
||||
sectorname = chr(ord('A') + (x + N//2) % N) \
|
||||
+ chr(ord('A') + y)
|
||||
|
||||
lon = (x + 0.5) * 2 * np.pi / N
|
||||
lat = (y + 0.5) * np.pi / N - np.pi/2
|
||||
|
||||
tx, ty = map_azimuthal_equidistant(lat, lon, ref_lat, ref_lon, R)
|
||||
|
||||
font_size = 10
|
||||
if y == 0 or y == N-1:
|
||||
font_size = 3
|
||||
|
||||
group.add(doc.text(sectorname, (tx + R, ty + R),
|
||||
**{'class': 'maidenhead_label',
|
||||
'font-size': font_size}))
|
||||
|
||||
doc.add(group) # Maidenhead grid
|
||||
|
||||
group = doc.g()
|
||||
|
||||
# generate equidistant circles
|
||||
|
||||
d_max = 40075/2
|
||||
for distance in [500, 1000, 2000, 3000, 4000, 5000, 6000, 8000, 10000,
|
||||
12000, 14000, 16000, 18000, 20000]:
|
||||
r = R * distance / d_max
|
||||
group.add(doc.circle(center=(R, R), r=r,
|
||||
**{'class': 'dist_circle'}))
|
||||
|
||||
group.add(doc.text(f"{distance} km", (R, R-r+5),
|
||||
**{'class': 'dist_circle_label'}))
|
||||
|
||||
# generate azimuth lines in 30° steps
|
||||
|
||||
for azimuth in np.arange(0, np.pi, np.pi/6):
|
||||
start_x = R + R * np.cos(azimuth-np.pi/2)
|
||||
start_y = R + R * np.sin(azimuth-np.pi/2)
|
||||
end_x = R - R * np.cos(azimuth-np.pi/2)
|
||||
end_y = R - R * np.sin(azimuth-np.pi/2)
|
||||
|
||||
group.add(doc.line((start_x, start_y), (end_x, end_y),
|
||||
**{'class': 'azimuth_line'}))
|
||||
|
||||
azimuth_deg = int(np.round(azimuth * 180 / np.pi))
|
||||
textpos = (2*R - 10, R - 2)
|
||||
|
||||
txt = doc.text(f"{azimuth_deg:d} °", textpos,
|
||||
**{'class': 'azimuth_line_label'})
|
||||
txt.rotate(azimuth_deg - 90, center=(R, R))
|
||||
group.add(txt)
|
||||
|
||||
txt = doc.text(f"{azimuth_deg+180:d} °", textpos,
|
||||
**{'class': 'azimuth_line_label'})
|
||||
txt.rotate(azimuth_deg - 90 + 180, center=(R, R))
|
||||
group.add(txt)
|
||||
|
||||
doc.add(group) # Circles, azimuth lines and labels
|
||||
|
||||
"""
|
||||
for x in range(0, 26):
|
||||
for y in range(0, 26):
|
||||
sectorname = chr(ord('A')+x) + chr(ord('A')+y)
|
||||
"""
|
||||
svg_add_countries(doc, simplegeodata, ref_lat, ref_lon, R)
|
||||
svg_add_maidenhead_grid(doc, ref_lat, ref_lon, R)
|
||||
svg_add_distance_azimuth_lines(doc, ref_lat, ref_lon, R)
|
||||
|
||||
print("Writing output…", file=sys.stderr)
|
||||
doc.write(output_stream, pretty=True)
|
||||
|
|
Loading…
Reference in a new issue