#include #include #include #include #include #include "utils.h" #include "packet_mod.h" #include "config.h" #include "preamble.h" #include "transmission.h" int main(void) { uint8_t msg_org[] = "Hello Liquid! This is the message to transmit. Hopefully it can be decoded correctly..."; fec q = fec_create(CHANNEL_CODE, NULL); modem demod = modem_create(MODULATION); channel_cccf channel = channel_cccf_create(); float snr = 50.0f; channel_cccf_add_awgn(channel, -snr, snr); channel_cccf_add_carrier_offset(channel, 0.20f, 1.00f); packet_mod_ctx_t pmod; packet_mod_init(&pmod); packet_mod_set_data(&pmod, msg_org, sizeof(msg_org)); packet_mod_encode(&pmod); packet_mod_modulate(&pmod); packet_mod_add_header(&pmod); packet_mod_add_preamble(&pmod); size_t nsyms; packet_mod_get_result_cf(&pmod, NULL, &nsyms); // determine number of symbols for allocation float complex msg_mod[nsyms]; packet_mod_get_result_cf(&pmod, msg_mod, &nsyms); // get the data size_t burst_len = 0; float complex whole_burst[65536]; size_t len; transmission_ctx_t transm; transmission_init(&transm); len = 65536-burst_len; if(transmission_ramp_up(&transm, whole_burst+burst_len, &len) != OK) { printf("Ramp-up requires %zd symbols at offset %zd.\n", len, burst_len); return 1; } burst_len += len; len = 65536-burst_len; if(transmission_filter_packet(&transm, msg_mod, nsyms, whole_burst+burst_len, &len) != OK) { printf("Packet requires %zd symbols at offset %zd.\n", len, burst_len); return 1; } burst_len += len; len = 65536-burst_len; if(transmission_ramp_down(&transm, whole_burst+burst_len, &len) != OK) { printf("Ramp-down requires %zd symbols at offset %zd.\n", len, burst_len); return 1; } burst_len += len; dump_array_cf(whole_burst, burst_len, 1.0f, "/tmp/tx.cpx"); // channel float complex msg_received[burst_len]; //memcpy(msg_received, whole_burst, sizeof(whole_burst)); // no noise in channel channel_cccf_execute_block(channel, whole_burst, burst_len, msg_received); dump_array_cf(msg_received, burst_len, 1.0f, "/tmp/rx.cpx"); // create NCO for carrier frequency compensation nco_crcf carrier_nco = nco_crcf_create(LIQUID_NCO); nco_crcf_set_frequency(carrier_nco, 0.00f); nco_crcf_set_phase(carrier_nco, 0.0f); // create symbol synchronizer symsync_crcf symsync = symsync_crcf_create_rnyquist(LIQUID_FIRFILT_RRC, RRC_SPS, RRC_DELAY, RRC_BETA, 32); float complex symsync_out[burst_len]; unsigned int symsync_out_len = 0; #define FREQ_EST_L 8 float phase_history[FREQ_EST_L]; memset(phase_history, 0, sizeof(phase_history)); for(unsigned int i = 0; i < burst_len; i++) { // Mix the input signal with the carrier NCO, which oscillates at the // frequency estimated so far. float complex mixed_sample; nco_crcf_step(carrier_nco); nco_crcf_mix_down(carrier_nco, msg_received[i], &mixed_sample); // run the timing synchronizer (works even with shifted frequency unsigned int out_len; symsync_crcf_execute(symsync, &mixed_sample, 1, symsync_out + symsync_out_len, &out_len); if(out_len != 0) { // for all the output samples produced, run the frequency // estimator. This is an implementation that works with unknown // BPSK symbols and therefore can be used during ramp-up and // preamble. if(out_len < FREQ_EST_L) { memmove(phase_history, phase_history + out_len, (FREQ_EST_L-out_len) * sizeof(phase_history[0])); } for(unsigned int j = 0; j < out_len; j++) { float complex *psymbol = symsync_out + symsync_out_len + j; // square the symbol to remove BPSK ambiguity float phase = cargf((*psymbol) * (*psymbol)); phase_history[FREQ_EST_L - out_len + j] = phase; } // update the frequency estimate if(((i/RRC_SPS) % FREQ_EST_L) == 0) { float unwrapped_phase_history[FREQ_EST_L]; memcpy(unwrapped_phase_history, phase_history, sizeof(unwrapped_phase_history)); liquid_unwrap_phase(unwrapped_phase_history, FREQ_EST_L); // calculate slope of LMS-fitted line float mean_index = (FREQ_EST_L-1) / 2.0f; float mean_phase = 0.0f; for(unsigned int j = 0; j < FREQ_EST_L; j++) { mean_phase += unwrapped_phase_history[j]; } mean_phase /= FREQ_EST_L; float numerator = 0.0f; float denominator = 0.0f; for(unsigned int j = 0; j < FREQ_EST_L; j++) { float delta_index = j - mean_index; numerator += delta_index * (unwrapped_phase_history[j] - mean_phase); denominator += delta_index*delta_index; } float lms_phase_change = numerator / denominator; float freq_adjustment = (lms_phase_change / RRC_SPS / 2) * 0.3f; nco_crcf_adjust_frequency(carrier_nco, freq_adjustment); printf("Frequency adjustment: %.6f - carrier frequency: %.6f\n", freq_adjustment, nco_crcf_get_frequency(carrier_nco)); if(i/RRC_SPS == 2*FREQ_EST_L) { float complex tmp[FREQ_EST_L]; for(unsigned int j = 0; j < FREQ_EST_L; j++) { tmp[j] = unwrapped_phase_history[j]; } dump_array_cf(tmp, FREQ_EST_L, 1.0f, "/tmp/freq_est.cpx"); printf("MARK\n"); } } } symsync_out_len += out_len; } dump_array_cf(symsync_out, symsync_out_len, 1.0f, "/tmp/synced.cpx"); #if 0 // demodulate unsigned int bps = modem_get_bps(demod); unsigned char msg_demod_syms[nsyms]; unsigned char msg_demod[k+1]; for(size_t i = 0; i < nsyms; i++) { unsigned int symbol; modem_demodulate(demod, msg_received[i], &symbol); msg_demod_syms[i] = symbol; } unsigned int received_bytes; liquid_repack_bytes(msg_demod_syms, bps, nsyms, msg_demod, 8, sizeof(msg_demod), &received_bytes); //assert(received_bytes == k); // decode uint8_t msg_dec[sizeof(msg_org)]; //memcpy(msg_dec, msg_enc, sizeof(msg_dec)); fec_decode(q, sizeof(msg_dec), msg_demod, msg_dec); // compare original to decoded message for(size_t i = 0; i < sizeof(msg_org); i++) { printf("%02x => %02x", msg_org[i], msg_dec[i]); if(msg_org[i] != msg_dec[i]) { printf(" <<< !!!\n"); } else { printf("\n"); } } unsigned int bit_errors = count_bit_errors_array(msg_org, msg_dec, sizeof(msg_org)); printf("%u bit errors detected.\n", bit_errors); #endif nco_crcf_destroy(carrier_nco); symsync_crcf_destroy(symsync); fec_destroy(q); modem_destroy(demod); channel_cccf_destroy(channel); printf("Done.\n"); }