SolarLader_Firmware/src/main.c

1166 lines
29 KiB
C

#include <libopencm3/stm32/rcc.h>
#include <libopencm3/stm32/adc.h>
#include <libopencm3/stm32/gpio.h>
#include <libopencm3/stm32/dma.h>
#include <libopencm3/stm32/timer.h>
#include <libopencm3/stm32/rtc.h>
#include <libopencm3/stm32/pwr.h>
#include <libopencm3/stm32/exti.h>
#include <libopencm3/cm3/nvic.h>
#include <libopencm3/cm3/systick.h>
#include <libopencmsis/core_cm3.h>
#include <fxp.h>
#include <fxp_basic.h>
#include "lcd.h"
#include "debug.h"
#define CONV_PWM_PERIOD 360
#define CONV_PWM_MAX (90*CONV_PWM_PERIOD/100)
#define TIM_CH_CONV TIM_OC1
#define TIM_CH_BOOTSTRAP TIM_OC2
#define MAX_SLEEP_TIME 600
#define MAX_SLEEP_TIME_LOW_VOLTAGE 120
#define ADC_VALUE_AT_ZERO_CURRENT 90
#define TIME_FROM_CV_TO_FLT 300000
enum OperState {
Bootstrap,
ConvConstVoltage,
ConvFloat,
ConvConstCurrent,
ConvMPP,
ThermalShutdown,
Idle,
};
volatile int wait_frame = 1;
#define ADC_NUM_CHANNELS 4
volatile int16_t adc_values[ADC_NUM_CHANNELS];
static void unlock_rtc_access(void)
{
pwr_disable_backup_domain_write_protect();
RTC_WPR = 0xCA;
RTC_WPR = 0x53;
}
static void lock_rtc_access(void)
{
RTC_WPR = 0xFF;
pwr_enable_backup_domain_write_protect();
}
static void init_gpio(void)
{
// Set up UART TX on PB6 for debugging
gpio_mode_setup(GPIOB, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO6);
gpio_set_af(GPIOB, GPIO_AF0, GPIO6);
// GPIO for converter switch
gpio_mode_setup(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO8);
gpio_set_af(GPIOA, GPIO_AF2, GPIO8);
// GPIO for bootstrap pulse
gpio_mode_setup(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO9);
gpio_set_af(GPIOA, GPIO_AF2, GPIO9);
// GPIO for load activation
gpio_mode_setup(GPIOA, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO15);
}
static void init_clock(void)
{
/* Set STM32 to 48 MHz. */
// Relevant for Timers
//rcc_clock_setup_in_hse_8mhz_out_48mhz();
rcc_clock_setup_in_hsi_out_48mhz();
// enable GPIO clocks:
// Port A is needed for the Display and more
rcc_periph_clock_enable(RCC_GPIOA);
// Port B is needed for debugging
rcc_periph_clock_enable(RCC_GPIOB);
// enable TIM3 for scheduling
rcc_periph_clock_enable(RCC_TIM3);
// enable TIM1 for PWM generation
rcc_periph_clock_enable(RCC_TIM1);
// enable ADC1 clock
rcc_periph_clock_enable(RCC_ADC1);
// enable DMA
rcc_periph_clock_enable(RCC_DMA);
}
static void init_rtc(void)
{
// RTC clock setup
// see libopencm3-examples::examples/stm32/l1/stm32l-discovery/button-irq-printf-lowpower/main.c
/* turn on power block to enable unlocking */
rcc_periph_clock_enable(RCC_PWR);
pwr_disable_backup_domain_write_protect();
/* reset rtc */
RCC_BDCR |= RCC_BDCR_BDRST;
RCC_BDCR &= ~RCC_BDCR_BDRST;
// use LSI for RTC
rcc_osc_on(RCC_LSI);
rcc_wait_for_osc_ready(RCC_LSI);
/* Select the LSI as rtc clock */
RCC_BDCR |= RCC_BDCR_RTCSEL_LSI;
/* ?! Stdperiph examples don't turn this on until _afterwards_ which
* simply doesn't work. It must be on at least to be able to
* configure it */
RCC_BDCR |= RCC_BDCR_RTCEN;
pwr_enable_backup_domain_write_protect();
nvic_enable_irq(NVIC_RTC_IRQ);
exti_set_trigger(EXTI17, EXTI_TRIGGER_RISING);
exti_enable_request(EXTI17);
}
static void init_timer(void)
{
// *** TIM1 ***
// Configure channels 1 and 2 for PWM (-> Pins PA8, PA9)
// Ch1 = Buck converter switch, Ch2 = bootstrap pulse
timer_reset(TIM1);
timer_set_mode(TIM1, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
// set up PWM channels
timer_set_oc_mode(TIM1, TIM_CH_CONV, TIM_OCM_PWM1);
timer_enable_oc_output(TIM1, TIM_CH_CONV);
timer_enable_oc_preload(TIM1, TIM_CH_CONV);
timer_set_oc_polarity_high(TIM1, TIM_CH_CONV);
timer_set_oc_mode(TIM1, TIM_CH_BOOTSTRAP, TIM_OCM_PWM1);
timer_enable_oc_output(TIM1, TIM_CH_BOOTSTRAP);
timer_enable_oc_preload(TIM1, TIM_CH_BOOTSTRAP);
timer_set_oc_polarity_high(TIM1, TIM_CH_BOOTSTRAP);
timer_set_oc_value(TIM1, TIM_CH_CONV, 0); // no PWM by default
timer_set_oc_value(TIM1, TIM_CH_BOOTSTRAP, 0); // no PWM by default
// wanted: 50 kHz / 20 us period
// system clock: 48 MHz
// => 960 clock cycles / period = CONV_PWM_PERIOD
// prescaler
timer_set_prescaler(TIM1, 0); // Timer runs at system clock
// auto-reload value
timer_set_period(TIM1, CONV_PWM_PERIOD - 1);
// only generate interrupt on overflow
timer_update_on_overflow(TIM1);
// enable master output bit
timer_enable_break_main_output(TIM1);
// *** TIM3 ***
// used for the 1-millisecond system tick
timer_reset(TIM3);
timer_set_mode(TIM3, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
// prescaler
timer_set_prescaler(TIM3, 47); // -> 1 us counting at 48 MHz
// auto-reload value
timer_set_period(TIM3, 999); // -> update interrupt every 1 ms
// enable update interrupt (triggered on timer restart)
timer_enable_irq(TIM3, TIM_DIER_UIE);
nvic_enable_irq(NVIC_TIM3_IRQ);
// Start all the timers!
timer_enable_counter(TIM3);
timer_enable_counter(TIM1);
}
static void init_adc(void)
{
uint8_t channels[ADC_NUM_CHANNELS] = {
0, // VInSense
1, // VOutSense
2, // CurrentSense
16 // Temperature sensor
};
adc_power_off(ADC1);
// enable the temperature sensor
adc_enable_temperature_sensor();
// configure ADC
//adc_enable_scan_mode(ADC1);
adc_set_single_conversion_mode(ADC1);
adc_set_resolution(ADC1, ADC_RESOLUTION_12BIT);
adc_set_sample_time_on_all_channels(ADC1, ADC_SMPR_SMP_239DOT5);
adc_disable_external_trigger_regular(ADC1);
adc_set_right_aligned(ADC1);
adc_set_regular_sequence(ADC1, ADC_NUM_CHANNELS, channels);
// configure DMA for ADC
//nvic_enable_irq(NVIC_DMA1_STREAM5_IRQ);
dma_channel_reset(DMA1, DMA_CHANNEL1);
dma_set_priority(DMA1, DMA_CHANNEL1, DMA_CCR_PL_LOW);
dma_set_memory_size(DMA1, DMA_CHANNEL1, DMA_CCR_MSIZE_16BIT);
dma_set_peripheral_size(DMA1, DMA_CHANNEL1, DMA_CCR_PSIZE_16BIT);
dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL1);
dma_enable_circular_mode(DMA1, DMA_CHANNEL1);
dma_set_read_from_peripheral(DMA1, DMA_CHANNEL1);
dma_set_peripheral_address(DMA1, DMA_CHANNEL1, (uint32_t) &ADC1_DR);
/* The array adc_values[] is filled with the waveform data to be output */
dma_set_memory_address(DMA1, DMA_CHANNEL1, (uint32_t) adc_values);
dma_set_number_of_data(DMA1, DMA_CHANNEL1, ADC_NUM_CHANNELS);
//dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL1);
dma_enable_channel(DMA1, DMA_CHANNEL1);
adc_enable_dma(ADC1);
adc_power_on(ADC1);
}
static void deepsleep(uint32_t duration_secs)
{
uint32_t tmp = 0;
// unlock RTC registers
unlock_rtc_access();
// enter initialization mode
RTC_ISR |= RTC_ISR_INIT;
// wait until initialization mode has been entered
while((RTC_ISR & RTC_ISR_INITF) != RTC_ISR_INITF) {
// do nothing
}
RTC_TR = 0; // 00:00:00
RTC_DR = // friday, 01.01.16
(1 << RTC_DR_YT_SHIFT) |
(6 << RTC_DR_YU_SHIFT) |
(5 << RTC_DR_WDU_SHIFT) |
(0 << RTC_DR_MT_SHIFT) |
(1 << RTC_DR_MU_SHIFT) |
(0 << RTC_DR_DT_SHIFT) |
(1 << RTC_DR_DU_SHIFT);
// disable Alarm A
RTC_CR &= ~RTC_CR_ALRAE;
// wait until register is writeable
while((RTC_ISR & RTC_ISR_ALRAWF) != RTC_ISR_ALRAWF) {
// do nothing
}
tmp |= (duration_secs % 10) << RTC_ALRMXR_SU_SHIFT;
duration_secs /= 10;
tmp |= (duration_secs % 6) << RTC_ALRMXR_ST_SHIFT;
duration_secs /= 6;
tmp |= (duration_secs % 10) << RTC_ALRMXR_MNU_SHIFT;
duration_secs /= 10;
tmp |= (duration_secs % 6) << RTC_ALRMXR_MNT_SHIFT;
duration_secs /= 6;
tmp |= (duration_secs % 10) << RTC_ALRMXR_HU_SHIFT;
duration_secs /= 10;
tmp |= (duration_secs % 2) << RTC_ALRMXR_HT_SHIFT;
// FIXME: >1d is not supported
tmp |= RTC_ALRMXR_MSK4; // ignore day/date
// set alarm register
RTC_ALRMAR = tmp;
// clear Alarm A flag
RTC_ISR &= ~RTC_ISR_ALRAF;
// enable RTC alarm interrupt for wakeup
RTC_CR |= RTC_CR_ALRAE | RTC_CR_ALRAIE;
// leave initialization mode
RTC_ISR &= ~RTC_ISR_INIT;
// lock registers again (using invalid key)
lock_rtc_access();
// enter deep sleep mode
SCB_SCR |= SCB_SCR_SLEEPDEEP;
PWR_CR |= PWR_CR_LPDS; // voltage regulator low-power mode
pwr_set_stop_mode();
__WFI();
SCB_SCR &= ~SCB_SCR_SLEEPDEEP; // no deepsleep except in this function
init_clock();
}
#if 0
/* Set up timer to fire freq times per second */
static void init_systick(int freq)
{
systick_set_clocksource(STK_CSR_CLKSOURCE_AHB);
/* clear counter so it starts right away */
STK_CVR = 0;
systick_set_reload(rcc_ahb_frequency / freq);
systick_counter_enable();
systick_interrupt_enable();
}
#endif
/* Temperature sensor calibration value address */
#define TEMP110_CAL_ADDR ((uint16_t*) ((uint32_t) 0x1FFFF7C2))
#define TEMP30_CAL_ADDR ((uint16_t*) ((uint32_t) 0x1FFFF7B8))
#define VDD_CALIB ((uint16_t) (330)) /* calibration voltage = 3,30V - DO NOT CHANGE */
#define VDD_APPLI ((uint16_t) (330)) /* actual supply voltage */
/* function for temperature conversion */
static fxp_t calc_temperature(uint16_t adc_val)
{
fxp_t temperature = fxp_from_int(
((int32_t)adc_val * VDD_APPLI / VDD_CALIB) -
(int32_t)*TEMP30_CAL_ADDR);
temperature = fxp_mult(temperature, fxp_from_int(110 - 30));
temperature = fxp_div(temperature, fxp_from_int(*TEMP110_CAL_ADDR - *TEMP30_CAL_ADDR));
return fxp_add(temperature, fxp_from_int(30));
}
struct PowerState {
fxp_t vin, vin_avg;
fxp_t vout, vout_avg;
fxp_t current, current_avg;
fxp_t temp, temp_avg; // junction temperature
fxp_t power_avg;
};
static void load_on(void)
{
gpio_set(GPIOA, GPIO15);
}
static void load_off(void)
{
gpio_clear(GPIOA, GPIO15);
}
static bool load_status(void)
{
return gpio_get(GPIOA, GPIO15) != 0;
}
static void report_status(struct PowerState *power_state,
int32_t pwm, enum OperState operState)
{
char number[FXP_STR_MAXLEN];
debug_send_string("DATA:");
fxp_format(power_state->vin_avg, number, 3);
debug_send_string(number);
debug_send_string(":");
fxp_format(power_state->vout_avg, number, 3);
debug_send_string(number);
debug_send_string(":");
fxp_format(power_state->current_avg, number, 3);
debug_send_string(number);
debug_send_string(":");
fxp_format_int(pwm, number);
debug_send_string(number);
debug_send_string(":");
fxp_format_int((int32_t)operState, number);
debug_send_string(number);
debug_send_string(":");
fxp_format(power_state->temp_avg, number, 1);
debug_send_string(number);
debug_send_string(":");
fxp_format_int(load_status(), number);
debug_send_string(number);
debug_send_string("\r\n");
}
fxp_t MPP_MAX_POWER_CHANGE_FACTOR;
struct MPPState {
int32_t testIdx; /* -1, if test requested, 0..MPP_TEST_STEPS-1 if running, >=MPP_TEST_STEPS if finished */
uint32_t nextTestStepTime;
fxp_t refPower;
int32_t refPWM;
fxp_t maxPower;
int32_t maxPWM;
fxp_t powerAccu;
int32_t powerSamples;
};
#define MPP_TEST_IGNORE_DURATION 5 /* ms */
#define MPP_TEST_ACCU_DURATION 20 /* ms */
#define MPP_TEST_DURATION (MPP_TEST_IGNORE_DURATION + MPP_TEST_ACCU_DURATION)
#define MPP_TEST_STEPS 6
const int32_t mpp_pwm_offsets[MPP_TEST_STEPS] = {-1, 2, -6, 5};
static void mpp_init(struct MPPState *mpp_state)
{
mpp_state->powerSamples = 0;
mpp_state->powerAccu = 0;
mpp_state->maxPower = 0;
mpp_state->refPower = 0;
mpp_state->nextTestStepTime = 0;
mpp_state->testIdx = -1;
mpp_state->maxPWM = CONV_PWM_MAX;
mpp_state->refPWM = CONV_PWM_MAX;
}
static void mpp_run(
uint32_t time_in_state, struct MPPState *mpp_state,
struct PowerState *power_state, int32_t *pwm)
{
fxp_t power_change;
fxp_t power_change_factor;
if(mpp_state->testIdx == -1) {
/* initiate new test */
mpp_state->refPower = power_state->power_avg;
mpp_state->nextTestStepTime = time_in_state + MPP_TEST_DURATION; /* time to give averagers to settle */
mpp_state->testIdx = 0;
mpp_state->refPWM = *pwm;
mpp_state->maxPower = 0;
mpp_state->maxPWM = *pwm;
mpp_state->powerAccu = 0;
mpp_state->powerSamples = 0;
*pwm = *pwm + mpp_pwm_offsets[0];
} else if(mpp_state->testIdx < MPP_TEST_STEPS) {
/* test running */
/* accumulation */
if(time_in_state > (mpp_state->nextTestStepTime - MPP_TEST_ACCU_DURATION)) {
mpp_state->powerAccu = fxp_add(mpp_state->powerAccu,
fxp_mult(power_state->vout, power_state->current));
mpp_state->powerSamples++;
}
if(time_in_state > mpp_state->nextTestStepTime) {
/* averaging */
mpp_state->powerAccu = fxp_div(mpp_state->powerAccu, fxp_from_int(mpp_state->powerSamples));
#ifdef DEBUG
char msg[16];
debug_send_string("Accu: ");
fxp_format(mpp_state->powerAccu, msg, 3);
debug_send_string(msg);
debug_send_string(" ");
fxp_format_int(mpp_state->powerSamples, msg);
debug_send_string(msg);
debug_send_string(" PWM: ");
fxp_format_int(*pwm, msg);
debug_send_string(msg);
debug_send_string(" Idx: ");
fxp_format_int(mpp_state->testIdx, msg);
debug_send_string(msg);
debug_send_string("\r\n");
#endif
if(mpp_state->powerAccu > mpp_state->maxPower) {
mpp_state->maxPower = mpp_state->powerAccu;
mpp_state->maxPWM = *pwm;
}
mpp_state->testIdx++;
if(mpp_state->testIdx < MPP_TEST_STEPS) {
*pwm = mpp_state->refPWM + mpp_pwm_offsets[mpp_state->testIdx];
mpp_state->nextTestStepTime = time_in_state + MPP_TEST_DURATION;
mpp_state->powerAccu = 0;
mpp_state->powerSamples = 0;
}
}
} else if(mpp_state->testIdx == MPP_TEST_STEPS) {
/* finalize test */
if(mpp_state->maxPower > mpp_state->refPower) {
mpp_state->refPower = mpp_state->maxPower;
*pwm = mpp_state->maxPWM;
/* test again after a short time */
mpp_state->testIdx++;
mpp_state->nextTestStepTime = time_in_state + 250;
} else {
/* We were already at the maximum power point */
*pwm = mpp_state->refPWM;
/* test again after some time */
mpp_state->testIdx++;
mpp_state->nextTestStepTime = time_in_state + 20000;
}
} else {
/* no test active, just holding PWM */
/* initiate new test after defined time */
if(time_in_state > mpp_state->nextTestStepTime) {
mpp_state->testIdx = -1;
}
/* initiate new test if power changes too much */
power_change = fxp_abs(fxp_sub(mpp_state->refPower, power_state->power_avg));
power_change_factor = fxp_div(power_change, mpp_state->refPower);
if(power_change_factor > MPP_MAX_POWER_CHANGE_FACTOR) {
mpp_state->testIdx = -1;
}
}
}
int main(void)
{
//uint32_t cpuload = 0;
uint64_t timebase_ms = 0;
uint32_t time_in_state = 0;
char msg[128];
char number[FXP_STR_MAXLEN];
uint8_t sentSomething = 0;
uint8_t loadInitialized = 0;
int32_t pwm = 0;
enum OperState operState = Bootstrap;
enum OperState nextState = ConvConstVoltage;
enum OperState lastState = operState;
struct PowerState power_state;
struct MPPState mpp_state;
fxp_t pErr = 0, iErr = 0;
fxp_t controlAction = 0;
fxp_t setPoint = 0;
uint32_t sleep_time = 10;
uint64_t force_display_update_time = 1000;
fxp_t PGAIN_CV = fxp_from_float( 2000.000f);
fxp_t IGAIN_CV = fxp_from_float( 1.000f);
fxp_t IERR_LIMIT = fxp_from_int(1000);
fxp_t PGAIN_CC = fxp_from_float(500.000f);
fxp_t IGAIN_CC = fxp_from_float( 1.000f);
fxp_t CURRENT_THRESHOLD = fxp_from_float(0.001f);
fxp_t AVG_FACT = fxp_from_float(0.01f);
fxp_t AVG_FACT_INV = fxp_sub(fxp_from_int(1), AVG_FACT);
// mode-changing thresholds and target definitions
fxp_t VOLTAGE_THR_MPP_TO_CV = fxp_from_float(14.400f); // V
fxp_t CONST_VOLTAGE = VOLTAGE_THR_MPP_TO_CV;
fxp_t CONST_FLOAT_VOLTAGE = fxp_from_float(13.800f); // V
fxp_t CURRENT_THR_ANY_TO_CC = fxp_from_float( 5.000f); // A
fxp_t CURRENT_THR_CC_TO_MPP = fxp_sub(CURRENT_THR_ANY_TO_CC, fxp_from_float(0.500f));
fxp_t VOLTAGE_THR_CV_TO_MPP = fxp_sub(CONST_VOLTAGE, fxp_from_float(0.300f));
fxp_t VOLTAGE_THR_FLOAT_TO_MPP = fxp_sub(CONST_FLOAT_VOLTAGE, fxp_from_float(0.300f));
// below this power in makes no sense to leave the converter on because the
// power used by it is more than what we can generate. Better wait until the
// input voltage rises again.
fxp_t POWER_THR_MPP_TO_IDLE = fxp_from_float(0.300f); // W
// input voltage must exceed this value to leave idle mode
fxp_t VOLTAGE_THR_IDLE_TO_MPP = fxp_from_float(19.0f); // V
// switch off load below LOAD_OFF_THRESHOLD to protect the battery; when the
// battery recovers above LOAD_ON_THRESHOLD the load is switched on again.
//
// If the battery voltage is below LOAD_LOW_VOLTAGE_THRESHOLD, the battery
// voltage is monitored more closely during idle mode.
fxp_t LOAD_ON_THRESHOLD = fxp_from_float(13.800f);
fxp_t LOAD_OFF_THRESHOLD = fxp_from_float(12.500f);
fxp_t LOAD_LOW_VOLTAGE_THRESHOLD = fxp_from_float(12.550f);
// Calculated values
//fxp_t VIN_SCALE = fxp_from_float(3.3f * (100 + 10.0f) / 10.0f / 4095.0f);
//fxp_t VOUT_SCALE = fxp_from_float(3.3f * (100 + 12.0f) / 12.0f / 4095.0f);
// Calibrated from measurements
fxp_t VIN_SCALE = fxp_from_float(36.23f / 4096.0f);
fxp_t VOUT_SCALE = fxp_from_float(30.75f / 4096.0f);
// current = adc • 0.00166 + -0.0725 = adc • m + t
fxp_t ADC2CURRENT_M = fxp_from_float( 0.00225f);
fxp_t ADC2CURRENT_T = fxp_from_float(-0.2255f);
// Thermal shutdown thresholds
fxp_t SHUTDOWN_TEMPERATURE = fxp_from_float(55.0f);
fxp_t RECOVER_TEMPERATURE = fxp_from_float(45.0f);
/* if power changes by more than this factor, MPP is tested again */
MPP_MAX_POWER_CHANGE_FACTOR = fxp_from_float(0.2f);
/* initalize power_state */
power_state.vin_avg = 0;
power_state.vout_avg = 0;
power_state.current_avg = 0;
power_state.power_avg = 0;
power_state.temp_avg = fxp_from_int(-999);
/* initialize mpp_state */
mpp_init(&mpp_state);
init_clock();
init_rtc();
init_gpio();
init_adc();
init_timer();
lcd_init();
debug_init();
debug_send_string("Init complete\r\n");
//init_systick(1000);
// triggered every 1 ms
while (1) {
if(timebase_ms == 900) {
adc_power_off(ADC1);
adc_calibrate(ADC1);
adc_power_on(ADC1);
}
// let the ADC+DMA do its work
adc_start_conversion_regular(ADC1);
// *** Do some calculations while ADC converts ***
if(lcd_setup()) {
lcd_process();
if(timebase_ms == force_display_update_time) {
lcd_set_cursor_pos(1, 0);
fxp_format(power_state.vin_avg, number, 1);
fxp_right_align(number, msg, 4, ' ');
lcd_send_string("I:");
lcd_send_string(msg);
lcd_send_string("V ");
fxp_format(power_state.vout_avg, number, 2);
fxp_right_align(number, msg, 5, ' ');
lcd_send_string("O:");
lcd_send_string(msg);
lcd_send_string("V ");
lcd_set_cursor_pos(0, 0);
fxp_format(power_state.temp_avg, number, 1);
fxp_right_align(number, msg, 4, ' ');
lcd_send_string(msg);
lcd_send_string("C");
lcd_set_cursor_pos(0, 10);
fxp_format(power_state.power_avg, number, 2);
fxp_right_align(number, msg, 5, ' ');
lcd_send_string(msg);
lcd_send_string("W");
force_display_update_time += 500;
}
}
// wait for DMA transfer to complete
while(!dma_get_interrupt_flag(DMA1, DMA_CHANNEL1, DMA_TCIF) && wait_frame);
dma_clear_interrupt_flags(DMA1, DMA_CHANNEL1, DMA_TCIF);
#ifdef DEBUG
if(timebase_ms % 250 == 0) {
debug_send_string("ADC: ");
for(int i = 0; i < ADC_NUM_CHANNELS; i++) {
fxp_format_int(adc_values[i], msg);
debug_send_string(msg);
debug_send_string(" ");
}
debug_send_string("\r\n");
}
#endif
// convert read values
power_state.vin = fxp_mult(fxp_from_int(adc_values[0]), VIN_SCALE);
power_state.vout = fxp_mult(fxp_from_int(adc_values[1]), VOUT_SCALE);
if(adc_values[2] <= ADC_VALUE_AT_ZERO_CURRENT+3) {
power_state.current = 0;
} else {
// current = adc • m + t
power_state.current = fxp_add(fxp_mult(fxp_from_int(adc_values[2]), ADC2CURRENT_M), ADC2CURRENT_T);
}
power_state.temp = calc_temperature(adc_values[3]);
power_state.vin_avg = fxp_add(fxp_mult(power_state.vin, AVG_FACT), fxp_mult(power_state.vin_avg, AVG_FACT_INV));
power_state.vout_avg = fxp_add(fxp_mult(power_state.vout, AVG_FACT), fxp_mult(power_state.vout_avg, AVG_FACT_INV));
power_state.current_avg = fxp_add(fxp_mult(power_state.current, AVG_FACT), fxp_mult(power_state.current_avg, AVG_FACT_INV));
power_state.temp_avg = fxp_add(fxp_mult(power_state.temp, AVG_FACT), fxp_mult(power_state.temp_avg, AVG_FACT_INV));
power_state.power_avg = fxp_mult(power_state.vout_avg, power_state.current_avg);
// load management
if(timebase_ms >= 100) {
if(!loadInitialized && power_state.vout_avg > LOAD_OFF_THRESHOLD) {
load_on();
loadInitialized = 1;
}
if(loadInitialized) {
if(power_state.vout_avg < LOAD_OFF_THRESHOLD) {
load_off();
} else if(power_state.vout_avg > LOAD_ON_THRESHOLD) {
load_on();
} /* else current state is kept */
}
}
// Main FSM
if(timebase_ms >= 1000) {
switch(operState) {
case Bootstrap:
// disable converter
// enable bootstrap pulse with very low duty cycle
timer_set_oc_value(TIM1, TIM_CH_CONV, 0);
timer_set_oc_value(TIM1, TIM_CH_BOOTSTRAP, 24);
if(time_in_state >= 10) { // bootstrap duration in ms
// bootstrap off
timer_set_oc_value(TIM1, TIM_CH_BOOTSTRAP, 0);
// go to next state
operState = nextState;
}
break;
case ConvConstVoltage:
if(time_in_state == 0) {
iErr = fxp_from_int(280);
}
// calculate error values
pErr = fxp_sub(CONST_VOLTAGE, power_state.vout_avg);
iErr = fxp_add(iErr, pErr);
// limit integral error range
if (iErr > IERR_LIMIT) iErr = IERR_LIMIT;
else if(iErr < -IERR_LIMIT) iErr = -IERR_LIMIT;
// calculate the controller output ("action")
controlAction = fxp_add(
fxp_mult(pErr, PGAIN_CV),
fxp_mult(iErr, IGAIN_CV));
pwm = fxp_to_int(controlAction);
if(pwm > CONV_PWM_MAX) {
pwm = CONV_PWM_MAX;
} else if(pwm < 0) {
pwm = 0;
}
timer_set_oc_value(TIM1, TIM_CH_CONV, pwm);
#ifdef DEBUG
if((time_in_state % 100) == 0) {
debug_send_string("pErr: ");
fxp_format(pErr, msg, 3);
debug_send_string(msg);
debug_send_string(" iErr: ");
fxp_format(iErr, msg, 3);
debug_send_string(msg);
debug_send_string(" controlAction: ");
fxp_format(controlAction, msg, 3);
debug_send_string(msg);
sentSomething = 1;
}
#endif
if(time_in_state > 3600*1000) {
operState = ConvFloat;
}
if(time_in_state > 5000 && fxp_to_int(controlAction) > CONV_PWM_MAX && power_state.current_avg < CURRENT_THRESHOLD) {
operState = Bootstrap;
nextState = ConvConstVoltage;
}
if(time_in_state > 1000 && power_state.vout_avg < VOLTAGE_THR_CV_TO_MPP) {
operState = ConvMPP;
}
if(power_state.current_avg > CURRENT_THR_ANY_TO_CC) {
operState = ConvConstCurrent;
}
if(power_state.vin_avg < power_state.vout_avg) {
operState = Idle;
}
break;
case ConvFloat:
if(time_in_state < TIME_FROM_CV_TO_FLT) {
setPoint =
fxp_add(CONST_VOLTAGE,
fxp_mult(fxp_sub(CONST_FLOAT_VOLTAGE, CONST_VOLTAGE), fxp_div(time_in_state, TIME_FROM_CV_TO_FLT)));
} else {
setPoint = CONST_FLOAT_VOLTAGE;
}
// calculate error values
pErr = fxp_sub(setPoint, power_state.vout_avg);
iErr = fxp_add(iErr, pErr);
// limit integral error range
if (iErr > IERR_LIMIT) iErr = IERR_LIMIT;
else if(iErr < -IERR_LIMIT) iErr = -IERR_LIMIT;
// calculate the controller output ("action")
controlAction = fxp_add(
fxp_mult(pErr, PGAIN_CV),
fxp_mult(iErr, IGAIN_CV));
pwm = fxp_to_int(controlAction);
if(pwm > CONV_PWM_MAX) {
pwm = CONV_PWM_MAX;
} else if(pwm < 0) {
pwm = 0;
}
timer_set_oc_value(TIM1, TIM_CH_CONV, pwm);
#ifdef DEBUG
if((time_in_state % 100) == 0) {
debug_send_string("pErr: ");
fxp_format(pErr, msg, 3);
debug_send_string(msg);
debug_send_string(" iErr: ");
fxp_format(iErr, msg, 3);
debug_send_string(msg);
debug_send_string(" controlAction: ");
fxp_format(controlAction, msg, 3);
debug_send_string(msg);
sentSomething = 1;
}
#endif
if(time_in_state > 5000 && fxp_to_int(controlAction) > CONV_PWM_MAX && power_state.current_avg < CURRENT_THRESHOLD) {
operState = Bootstrap;
nextState = ConvConstVoltage;
}
if(time_in_state > 1000 && power_state.vout_avg < VOLTAGE_THR_FLOAT_TO_MPP) {
operState = ConvMPP;
}
if(power_state.current_avg > CURRENT_THR_ANY_TO_CC) {
operState = ConvConstCurrent;
}
if(power_state.vin_avg < power_state.vout_avg) {
operState = Idle;
}
break;
case ConvConstCurrent:
if(time_in_state == 0) {
iErr = 0;
}
// calculate error values
pErr = fxp_sub(CURRENT_THR_ANY_TO_CC, power_state.current_avg);
iErr = fxp_add(iErr, pErr);
// limit integral error range
if (iErr > IERR_LIMIT) iErr = IERR_LIMIT;
else if(iErr < -IERR_LIMIT) iErr = -IERR_LIMIT;
// calculate the controller output ("action")
controlAction = fxp_add(
fxp_mult(pErr, PGAIN_CC),
fxp_mult(iErr, IGAIN_CC));
pwm = fxp_to_int(controlAction);
if(pwm > CONV_PWM_MAX) {
pwm = CONV_PWM_MAX;
} else if(pwm < 0) {
pwm = 0;
}
timer_set_oc_value(TIM1, TIM_CH_CONV, pwm);
if(time_in_state > 5000 && pwm > CONV_PWM_MAX && power_state.current_avg < CURRENT_THRESHOLD) {
operState = Bootstrap;
nextState = ConvConstCurrent;
}
if (time_in_state > 1000 && power_state.current_avg < CURRENT_THR_CC_TO_MPP) {
operState = ConvMPP;
}
if(power_state.vout_avg > VOLTAGE_THR_MPP_TO_CV) {
operState = ConvConstVoltage;
}
break;
case ConvMPP:
if(time_in_state == 0) {
pwm = CONV_PWM_MAX * 8 / 10;
mpp_init(&mpp_state);
}
mpp_run(time_in_state, &mpp_state, &power_state, &pwm);
if(pwm > CONV_PWM_MAX) {
pwm = CONV_PWM_MAX;
} else if(pwm < CONV_PWM_PERIOD/10) {
pwm = CONV_PWM_PERIOD/10;
}
timer_set_oc_value(TIM1, TIM_CH_CONV, pwm);
if(time_in_state > 1000 && power_state.power_avg < POWER_THR_MPP_TO_IDLE) {
operState = Idle;
}
if(power_state.vout_avg > VOLTAGE_THR_MPP_TO_CV) {
operState = ConvConstVoltage;
}
if(power_state.current_avg > CURRENT_THR_ANY_TO_CC) {
operState = ConvConstCurrent;
}
if(power_state.vin_avg < power_state.vout_avg) {
operState = Idle;
}
#ifdef DEBUG
if((time_in_state % 100) == 0) {
debug_send_string("PWM: ");
fxp_format_int(pwm, msg);
debug_send_string(msg);
sentSomething = 1;
}
#endif
break;
case Idle:
// disable all PWMs
timer_set_oc_value(TIM1, TIM_CH_CONV, 0);
timer_set_oc_value(TIM1, TIM_CH_BOOTSTRAP, 0);
if(time_in_state > 1000 && power_state.vin_avg > VOLTAGE_THR_IDLE_TO_MPP) {
sleep_time = 10;
operState = Bootstrap;
nextState = ConvMPP;
}
if(time_in_state > 10000) {
// not enough power for too long -> put system to deep sleep
lcd_set_cursor_pos(0, 0);
lcd_send_string("Sleep(");
fxp_format_int(sleep_time, msg);
lcd_send_string(msg);
lcd_send_string(") ");
while(lcd_process() == 0); // send everything immediately
#ifndef DEBUG
deepsleep(sleep_time);
// Woke up again.
lcd_set_cursor_pos(0, 0);
lcd_send_string(" ");
time_in_state = 9000; // run the voltage test again
#else
time_in_state = 0;
#endif
sleep_time *= 2;
if(power_state.vout_avg > LOAD_LOW_VOLTAGE_THRESHOLD) {
if(sleep_time > MAX_SLEEP_TIME) {
sleep_time = MAX_SLEEP_TIME;
}
} else {
if(sleep_time > MAX_SLEEP_TIME_LOW_VOLTAGE) {
sleep_time = MAX_SLEEP_TIME_LOW_VOLTAGE;
}
}
force_display_update_time = timebase_ms + 10;
}
break;
case ThermalShutdown:
// shut down the converter
timer_set_oc_value(TIM1, TIM_CH_CONV, 0);
if(power_state.temp_avg < RECOVER_TEMPERATURE) {
nextState = ConvMPP;
operState = Bootstrap;
}
break;
default:
debug_send_string("Invalid state detected!");
sentSomething = 1;
operState = Idle;
break;
}
if(power_state.temp_avg > SHUTDOWN_TEMPERATURE) {
operState = ThermalShutdown;
}
if(operState != lastState) {
time_in_state = 0;
lastState = operState;
lcd_set_cursor_pos(0, 6);
switch(operState) {
case Idle:
lcd_send_string("IDL");
break;
case Bootstrap:
lcd_send_string("BTS");
break;
case ConvConstCurrent:
lcd_send_string("CC ");
break;
case ConvConstVoltage:
lcd_send_string("CV ");
break;
case ConvFloat:
lcd_send_string("FLT");
break;
case ConvMPP:
lcd_send_string("MPP");
break;
case ThermalShutdown:
lcd_send_string("TRM");
break;
default:
lcd_send_string("???");
break;
}
} else {
time_in_state++;
}
}
if(sentSomething) {
debug_send_string("\r\n");
sentSomething = 0;
}
if((timebase_ms % 1000) == 490) {
report_status(&power_state, pwm, operState);
}
/*
if((timebase_ms % 1000) == 10) {
cpuload /= 1000;
// use CPU load values here
cpuload = 0;
}
// cpu load = timer1 value after main loop operations
cpuload += timer_get_counter(TIM3);
*/
timebase_ms++;
while(wait_frame) {
__WFI();
}
wait_frame = 1;
}
return 0;
}
/* Called when systick fires */
void sys_tick_handler(void)
{
wait_frame = 0;
}
void tim3_isr(void)
{
// check for update interrupt
if(timer_interrupt_source(TIM3, TIM_SR_UIF)) {
wait_frame = 0;
timer_clear_flag(TIM3, TIM_SR_UIF);
}
}
void rtc_isr(void)
{
exti_reset_request(EXTI17);
}
void hard_fault_handler(void)
{
while (1);
}