#include #include #include #include #include #include #include #include #include #include "lcd.h" #include "debug.h" #define CONV_PWM_MAX 960 #define TIM_CH_CONV TIM_OC1 #define TIM_CH_BOOTSTRAP TIM_OC2 volatile int wait_frame = 1; #define ADC_NUM_CHANNELS 3 volatile uint16_t adc_values[ADC_NUM_CHANNELS]; static void init_gpio(void) { // Set up UART TX on PB6 for debugging gpio_mode_setup(GPIOB, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO6); gpio_set_af(GPIOB, GPIO_AF0, GPIO6); // GPIO for converter switch // FIXME: AF gpio_mode_setup(GPIOA, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO8); gpio_clear(GPIOA, GPIO8); // GPIO for bootstrap pulse // FIXME: AF gpio_mode_setup(GPIOA, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO9); gpio_clear(GPIOA, GPIO9); // GPIO for load activation gpio_mode_setup(GPIOA, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO15); gpio_set(GPIOA, GPIO15); } static void init_clock(void) { /* Set STM32 to 48 MHz. */ // Relevant for Timers //rcc_clock_setup_in_hse_8mhz_out_48mhz(); rcc_clock_setup_in_hsi_out_48mhz(); // enable GPIO clocks: // Port A is needed for the Display and more rcc_periph_clock_enable(RCC_GPIOA); // Port B is needed for debugging rcc_periph_clock_enable(RCC_GPIOB); // enable TIM3 for scheduling rcc_periph_clock_enable(RCC_TIM3); // enable TIM1 for PWM generation rcc_periph_clock_enable(RCC_TIM1); // enable ADC1 clock rcc_periph_clock_enable(RCC_ADC1); // enable DMA rcc_periph_clock_enable(RCC_DMA); } static void init_timer(void) { // *** TIM1 *** // Configure channels 1 and 2 for PWM (-> Pins PA8, PA9) // Ch1 = Buck converter switch, Ch2 = bootstrap pulse timer_reset(TIM1); timer_set_mode(TIM1, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP); // set up PWM channels timer_set_oc_mode(TIM1, TIM_CH_CONV, TIM_OCM_PWM1); timer_enable_oc_output(TIM1, TIM_CH_CONV); timer_enable_oc_preload(TIM1, TIM_CH_CONV); timer_set_oc_polarity_high(TIM1, TIM_CH_CONV); timer_set_oc_mode(TIM1, TIM_CH_BOOTSTRAP, TIM_OCM_PWM1); timer_enable_oc_output(TIM1, TIM_CH_BOOTSTRAP); timer_enable_oc_preload(TIM1, TIM_CH_BOOTSTRAP); timer_set_oc_polarity_low(TIM1, TIM_CH_BOOTSTRAP); timer_set_oc_value(TIM1, TIM_CH_CONV, 0); // no PWM by default timer_set_oc_value(TIM1, TIM_CH_BOOTSTRAP, 0); // no PWM by default // wanted: 50 kHz / 20 us period // system clock: 48 MHz // => 960 clock cycles / period = CONV_PWM_MAX // prescaler timer_set_prescaler(TIM1, 0); // Timer runs at system clock // auto-reload value timer_set_period(TIM1, CONV_PWM_MAX - 1); // enable update interrupt (triggered on timer restart) //timer_enable_irq(TIM1, TIM_DIER_UIE); // *** TIM3 *** // used for the 1-millisecond system tick timer_reset(TIM3); timer_set_mode(TIM3, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP); // prescaler timer_set_prescaler(TIM3, 47); // -> 1 us counting at 48 MHz // auto-reload value timer_set_period(TIM3, 999); // -> update interrupt every 1 ms // enable update interrupt (triggered on timer restart) timer_enable_irq(TIM3, TIM_DIER_UIE); nvic_enable_irq(NVIC_TIM3_IRQ); // Start all the timers! timer_enable_counter(TIM3); timer_enable_counter(TIM1); } static void init_adc(void) { uint8_t channels[ADC_NUM_CHANNELS] = { ADC_CHANNEL0, // VInSense ADC_CHANNEL1, // VOutSense ADC_CHANNEL2 // CurrentSense }; adc_power_off(ADC1); // configure ADC //adc_enable_scan_mode(ADC1); adc_set_single_conversion_mode(ADC1); adc_set_resolution(ADC1, ADC_RESOLUTION_12BIT); adc_set_sample_time_on_all_channels(ADC1, ADC_SMPR_SMP_071DOT5); adc_disable_external_trigger_regular(ADC1); adc_set_right_aligned(ADC1); adc_set_regular_sequence(ADC1, ADC_NUM_CHANNELS, channels); // configure DMA for ADC //nvic_enable_irq(NVIC_DMA1_STREAM5_IRQ); dma_channel_reset(DMA1, DMA_CHANNEL1); dma_set_priority(DMA1, DMA_CHANNEL1, DMA_CCR_PL_LOW); dma_set_memory_size(DMA1, DMA_CHANNEL1, DMA_CCR_MSIZE_16BIT); dma_set_peripheral_size(DMA1, DMA_CHANNEL1, DMA_CCR_PSIZE_16BIT); dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL1); dma_enable_circular_mode(DMA1, DMA_CHANNEL1); dma_set_read_from_peripheral(DMA1, DMA_CHANNEL1); dma_set_peripheral_address(DMA1, DMA_CHANNEL1, (uint32_t) &ADC1_DR); /* The array adc_values[] is filled with the waveform data to be output */ dma_set_memory_address(DMA1, DMA_CHANNEL1, (uint32_t) adc_values); dma_set_number_of_data(DMA1, DMA_CHANNEL1, ADC_NUM_CHANNELS); //dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL1); dma_enable_channel(DMA1, DMA_CHANNEL1); adc_enable_dma(ADC1); // GO! adc_power_on(ADC1); } #if 0 /* Set up timer to fire freq times per second */ static void init_systick(int freq) { systick_set_clocksource(STK_CSR_CLKSOURCE_AHB); /* clear counter so it starts right away */ STK_CVR = 0; systick_set_reload(rcc_ahb_frequency / freq); systick_counter_enable(); systick_interrupt_enable(); } #endif int main(void) { uint16_t cpuload = 0; uint64_t timebase_ms = 0; char msg[128]; char number[FXP_STR_MAXLEN]; uint8_t sentSomething = 0; // Calculated values //fxp_t VIN_SCALE = fxp_from_float(3.3f * (100 + 12.4f) / 12.4f / 4095.0f); //fxp_t VOUT_SCALE = fxp_from_float(3.3f * (100 + 12.0f) / 12.0f / 4095.0f); //fxp_t CURRENT_SCALE = fxp_from_float(9.7f / 4095.0f); // Calibrated from measurements fxp_t VIN_SCALE = fxp_from_float(12.11f / 1600.0f); fxp_t VOUT_SCALE = fxp_from_float(12.6f / 1620.0f); fxp_t CURRENT_SCALE = fxp_from_float(9.01f / 4095.0f); init_clock(); init_gpio(); init_adc(); init_timer(); lcd_init(); debug_init(); debug_send_string("Init complete\r\n"); // boost converter PWM initial value //timer_set_oc_value(TIM3, TIM_OC1, 0); //init_systick(1000); // triggered every 1 ms while (1) { // let the ADC+DMA do its work adc_start_conversion_regular(ADC1); /* // *** Do some calculations while ADC converts *** // Ramp up target voltage if((targetVoltage < TARGET_VOLTAGE) && (voltRampUpCountdown-- == 0)) { targetVoltage += 2.0f; voltRampUpCountdown = VOLTAGE_UP_INTERVAL; if(targetVoltage > TARGET_VOLTAGE) { targetVoltage = TARGET_VOLTAGE; } } // read ADC value while(!adc_eoc(ADC1)); adcval = adc_read_regular(ADC1); // scale current measurement curVoltage = VOLTAGE_MEAS_MAX * adcval / 4096.0f; // calculate error values pErr = targetVoltage - curVoltage; iErr += pErr; // limit integral error range if (iErr > IERR_LIMIT) iErr = IERR_LIMIT; else if(iErr < -IERR_LIMIT) iErr = -IERR_LIMIT; // calculate the controller output ("action") controlAction = pErr * PGAIN + iErr * IGAIN; // calculate resulting PWM value if(controlAction > MAX_DUTY_CYCLE) { pwm_value = (int)(PWM_PERIOD * MAX_DUTY_CYCLE); } else if(controlAction > 0) { pwm_value = (int)(controlAction * PWM_PERIOD); } else { pwm_value = 0; } */ //timer_set_oc_value(TIM3, TIM_OC1, pwm_value); /* if((timebase_ms % 500) == 10) { sprintf(msg, "Audio PWM: %lu", dbg_audio_pwm_value); debug_send_string(msg); sentSomething = 1; } */ // wait for DMA transfer to complete while(!dma_get_interrupt_flag(DMA1, DMA_CHANNEL1, DMA_TCIF) && wait_frame); dma_clear_interrupt_flags(DMA1, DMA_CHANNEL1, DMA_TCIF); if((timebase_ms % 500) == 0) { debug_send_string("ADC:"); for(uint8_t i = 0; i < ADC_NUM_CHANNELS; i++) { fxp_format_int(adc_values[i], msg); debug_send_string(" "); debug_send_string(msg); } fxp_t scaled_val; scaled_val = fxp_mult(fxp_from_int(adc_values[0]), VIN_SCALE); fxp_format(scaled_val, msg, 3); debug_send_string("\r\nInput[V]: "); debug_send_string(msg); scaled_val = fxp_mult(fxp_from_int(adc_values[1]), VOUT_SCALE); fxp_format(scaled_val, msg, 3); debug_send_string("\r\nOutput[V]: "); debug_send_string(msg); scaled_val = fxp_mult(fxp_from_int(adc_values[2]), CURRENT_SCALE); fxp_format(scaled_val, msg, 3); debug_send_string("\r\nCurrent[A]: "); debug_send_string(msg); sentSomething = 1; } if(sentSomething) { debug_send_string("\r\n"); sentSomething = 0; } if(lcd_setup()) { lcd_process(); if((timebase_ms % 500) == 0) { fxp_t scaled_val; lcd_set_cursor_pos(1, 0); scaled_val = fxp_mult(fxp_from_int(adc_values[0]), VIN_SCALE); fxp_format(scaled_val, number, 1); fxp_right_align(number, msg, 4, ' '); lcd_send_string("I:"); lcd_send_string(msg); lcd_send_string("V "); scaled_val = fxp_mult(fxp_from_int(adc_values[1]), VOUT_SCALE); fxp_format(scaled_val, number, 1); fxp_right_align(number, msg, 4, ' '); lcd_send_string("O:"); lcd_send_string(msg); lcd_send_string("V "); lcd_set_cursor_pos(0, 8); scaled_val = fxp_mult(fxp_from_int(adc_values[2]), CURRENT_SCALE); scaled_val = fxp_mult(scaled_val, fxp_from_int(1000)); // A -> mA fxp_format(scaled_val, number, 0); fxp_right_align(number, msg, 4, ' '); lcd_send_string(msg); lcd_send_string("mA"); } if((timebase_ms % 1000) == 10) { cpuload /= 1000; lcd_set_cursor_pos(0, 0); fxp_format_int((int32_t)cpuload, number); fxp_right_align(number, msg, 3, '0'); lcd_send_string("L:0."); lcd_send_string(msg); } } // cpu load = timer1 value after main loop operations cpuload += timer_get_counter(TIM3); timebase_ms++; while(wait_frame); wait_frame = 1; } return 0; } /* Called when systick fires */ void sys_tick_handler(void) { wait_frame = 0; } void tim3_isr(void) { // check for update interrupt if(timer_interrupt_source(TIM3, TIM_SR_UIF)) { wait_frame = 0; timer_clear_flag(TIM3, TIM_SR_UIF); } } void hard_fault_handler(void) { while (1); }