// vim: noet use crate::animation::{Color, Animation, Result}; use crate::signal_processing::SignalProcessing; use crate::config; use std::rc::Rc; use std::cell::RefCell; use rand::Rng; const COOLDOWN_FACTOR : f32 = 0.99980; const RGB_EXPONENT : f32 = 1.5; const W_EXPONENT : f32 = 2.2; const W_SCALE : f32 = 0.5; const BRIGHTNESS_FILTER_ALPHA : f32 = 0.1; const NUM_RACERS_R : usize = 10; const NUM_RACERS_G : usize = 10; const NUM_RACERS_B : usize = 10; const RACER_MIN_SPEED_R : f32 = 0.5 / config::FPS_ANIMATION; const RACER_MAX_SPEED_R : f32 = 30.0 / config::FPS_ANIMATION; const RACER_MIN_BRIGHTNESS_R : f32 = 0.01; const RACER_MAX_BRIGHTNESS_R : f32 = 1.00; const RACER_MIN_SPEED_G : f32 = 0.5 / config::FPS_ANIMATION; const RACER_MAX_SPEED_G : f32 = 30.0 / config::FPS_ANIMATION; const RACER_MIN_BRIGHTNESS_G : f32 = 0.01; const RACER_MAX_BRIGHTNESS_G : f32 = 1.00; const RACER_MIN_SPEED_B : f32 = 0.5 / config::FPS_ANIMATION; const RACER_MAX_SPEED_B : f32 = 30.0 / config::FPS_ANIMATION; const RACER_MIN_BRIGHTNESS_B : f32 = 0.01; const RACER_MAX_BRIGHTNESS_B : f32 = 1.00; const SPEED_SCALE_RANGE : f32 = 0.10; /* * A racer is a point of light that can move along the LED strips. */ struct Racer { min_speed: f32, // LEDs per frame max_speed: f32, // LEDs per frame direction: i8, // either +1 or -1 min_brightness: f32, max_brightness: f32, color: Color, pos: f32, brightness: f32, flare_brightness: f32, } impl Racer { pub fn new(min_speed: f32, max_speed: f32, min_brightness: f32, max_brightness: f32, color: Color, start_pos: f32) -> Racer { Racer { min_speed: min_speed, max_speed: max_speed, min_brightness: min_brightness, max_brightness: max_brightness, direction: 1, color: color, pos: start_pos, brightness: min_brightness, flare_brightness: 0.0, } } fn _pos2ledstrip(pos: i32) -> (i32, i32) { let strip = pos / (config::NUM_LEDS_PER_STRIP as i32); let mut led = pos % (config::NUM_LEDS_PER_STRIP as i32); if (strip % 2) == 1 { led = (config::NUM_LEDS_PER_STRIP as i32) - led - 1; } (strip, led) } pub fn update(&mut self, brightness: f32, flare_brightness: f32) { // move along the strip let cur_speed = self.min_speed + brightness * (self.max_speed - self.min_speed); self.pos += (self.direction as f32) * cur_speed; let maxpos = config::NUM_LEDS_TOTAL as f32; // if the end is reached, reverse the direction if self.pos >= maxpos { self.direction = -1; self.pos = 2.0 * maxpos - self.pos; } else if self.pos <= 0.0 { self.direction = 1; self.pos = -self.pos; } self.brightness = brightness; self.flare_brightness = flare_brightness; } pub fn render(&self, colorlists: &mut [ [Color; config::NUM_LEDS_PER_STRIP]; config::NUM_STRIPS]) { let brightness = self.min_brightness + self.brightness * (self.max_brightness - self.min_brightness); let fract_led = self.pos - self.pos.floor(); let led1_idx = self.pos.floor() as i32; let led2_idx = self.pos.ceil() as i32; let mut color = self.color; color.w += self.flare_brightness; let led1_color = color.scaled_copy((1.0 - fract_led) * brightness); let led2_color = color.scaled_copy(fract_led * brightness); if led1_idx >= 0 { let (strip, led) = Racer::_pos2ledstrip(led1_idx); colorlists[strip as usize][led as usize].add(&led1_color); } if led2_idx < (config::NUM_LEDS_TOTAL as i32) { let (strip, led) = Racer::_pos2ledstrip(led2_idx); colorlists[strip as usize][led as usize].add(&led2_color); } } } pub struct Racers { max_energy : Color, filtered_energy : Color, racers_r : Vec, racers_g : Vec, racers_b : Vec, colorlists : [ [Color; config::NUM_LEDS_PER_STRIP]; config::NUM_STRIPS], sigproc: Rc>, } impl Animation for Racers { fn new(sigproc: Rc>) -> Racers { Racers { max_energy: Color{r: 1.0, g: 1.0, b: 1.0, w: 1.0}, filtered_energy: Color{r: 0.0, g: 0.0, b: 0.0, w: 0.0}, racers_r: Vec::with_capacity(NUM_RACERS_R), racers_g: Vec::with_capacity(NUM_RACERS_G), racers_b: Vec::with_capacity(NUM_RACERS_B), colorlists: [ [Color{r: 0.0, g: 0.0, b: 0.0, w: 0.0}; config::NUM_LEDS_PER_STRIP]; config::NUM_STRIPS], sigproc: sigproc, } } fn init(&mut self) -> Result<()> { let mut rng = rand::thread_rng(); for _i in 0 .. NUM_RACERS_R { let start_pos = rng.gen::() * (config::NUM_LEDS_TOTAL as f32); let speed_scale = 1.0 + SPEED_SCALE_RANGE * (rng.gen::() - 0.5); self.racers_r.push(Racer::new( RACER_MIN_SPEED_R * speed_scale, RACER_MAX_SPEED_R * speed_scale, RACER_MIN_BRIGHTNESS_R, RACER_MAX_BRIGHTNESS_R, Color{r: 1.0, g: 0.0, b: 0.0, w: 0.0}, start_pos)); } for _i in 0 .. NUM_RACERS_G { let start_pos = rng.gen::() * (config::NUM_LEDS_TOTAL as f32); let speed_scale = 1.0 + SPEED_SCALE_RANGE * (rng.gen::() - 0.5); self.racers_g.push(Racer::new( RACER_MIN_SPEED_G * speed_scale, RACER_MAX_SPEED_G * speed_scale, RACER_MIN_BRIGHTNESS_G, RACER_MAX_BRIGHTNESS_G, Color{r: 0.0, g: 1.0, b: 0.0, w: 0.0}, start_pos)); } for _i in 0 .. NUM_RACERS_B { let start_pos = rng.gen::() * (config::NUM_LEDS_TOTAL as f32); let speed_scale = 1.0 + SPEED_SCALE_RANGE * (rng.gen::() - 0.5); self.racers_b.push(Racer::new( RACER_MIN_SPEED_B * speed_scale, RACER_MAX_SPEED_B * speed_scale, RACER_MIN_BRIGHTNESS_B, RACER_MAX_BRIGHTNESS_B, Color{r: 0.0, g: 0.0, b: 1.0, w: 0.0}, start_pos)); } Ok(()) } fn periodic(&mut self) -> Result<()> { let sigproc = self.sigproc.borrow(); // extract frequency band energies let cur_energy = Color{ r: sigproc.get_energy_in_band( 0.0, 400.0), g: sigproc.get_energy_in_band( 400.0, 4000.0), b: sigproc.get_energy_in_band( 4000.0, 12000.0), w: sigproc.get_energy_in_band(12000.0, 22000.0)}; // track the maximum energy with cooldown self.max_energy.r *= COOLDOWN_FACTOR; if cur_energy.r > self.max_energy.r { self.max_energy.r = cur_energy.r; } self.max_energy.g *= COOLDOWN_FACTOR; if cur_energy.g > self.max_energy.g { self.max_energy.g = cur_energy.g; } self.max_energy.b *= COOLDOWN_FACTOR; if cur_energy.b > self.max_energy.b { self.max_energy.b = cur_energy.b; } self.max_energy.w *= COOLDOWN_FACTOR; if cur_energy.w > self.max_energy.w { self.max_energy.w = cur_energy.w; } // set all LEDs initially to black for strip in 0..config::NUM_STRIPS { for led in 0..config::NUM_LEDS_PER_STRIP { //self.colorlists[strip][led].scale(FADE_FACTOR); self.colorlists[strip][led] = Color{r: 0.0, g: 0.0, b: 0.0, w: 0.0}; } } // rescaling and normalization of the energies let scaled_energy = Color{ r: (cur_energy.r / self.max_energy.r).powf(RGB_EXPONENT), g: (cur_energy.g / self.max_energy.g).powf(RGB_EXPONENT), b: (cur_energy.b / self.max_energy.b).powf(RGB_EXPONENT), w: (cur_energy.w / self.max_energy.w).powf(W_EXPONENT) * W_SCALE, }; for i in 0..4 { let f = self.filtered_energy.ref_by_index_mut(i).unwrap(); let n = scaled_energy.ref_by_index(i).unwrap(); *f = (1.0 - BRIGHTNESS_FILTER_ALPHA) * (*f) + BRIGHTNESS_FILTER_ALPHA * (*n); } // update all racers let f = &self.filtered_energy; self.racers_r.iter_mut().for_each(|x| x.update(f.r, f.w)); self.racers_g.iter_mut().for_each(|x| x.update(f.g, f.w)); self.racers_b.iter_mut().for_each(|x| x.update(f.b, f.w)); // render all racers for racer in self.racers_r.iter() { racer.render(&mut self.colorlists); } for racer in self.racers_g.iter() { racer.render(&mut self.colorlists); } for racer in self.racers_b.iter() { racer.render(&mut self.colorlists); } // color post-processing for strip in 0..config::NUM_STRIPS { for led in 0..config::NUM_LEDS_PER_STRIP { self.colorlists[strip][led].limit(); } } Ok(()) } fn get_colorlist(&self) -> &[ [Color; config::NUM_LEDS_PER_STRIP]; config::NUM_STRIPS] { return &self.colorlists; } }